
Optimal Publication Rules for Evidence-Based Policy

Toru Kitagawa† Patrick Vu‡

October 23, 2023

Abstract

Empirical research can inform evidence-based policy choice but may be cen-

sored due to publication bias. How does this impact the decisions of policy-

makers who do not have, or are unwilling to use, prior beliefs about a policy’s

impact? For minimax regret policymakers, we characterize the optimal treat-

ment rule with selective publication against statistically insignificant results.

We then show that the optimal publication rule which minimizes maximum

regret is non-selective. This contrasts with the optimal publication rule for

Bayesian policymakers studied in the literature, where only ‘extreme’ results

that sufficiently move the prior are published. Thus, in the minimax regret

framework, the optimal publication regime for policy choice is consistent with

valid statistical inference in scientific research.
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I. Introduction

Publication bias has been widely-documented across various fields and led to debates in the

scientific community about reforming publication norms (Ioannidis, 2005; Franco et al., 2014;

Nosek et al., 2015; Miguel and Christensen, 2018; Nosek et al., 2018; Andrews and Kasy,

2019). Proposals to combat publication bias are often aimed at mitigating selective publication

of statistically significant findings. For example, launching journals dedicated to publishing

null results (e.g. PLOS One); promoting preregistered analysis plans which are reviewed and

published prior to data collection (e.g. the Journal of Development Economics); banning the use

of stars to denote significance when presenting estimation results (e.g. the American Economic

Review); and even abandoning statistical significance altogether (McShane et al., 2019).

However, non-selective publication may not necessarily be optimal from the perspective of

a decision-maker who uses evidence from published studies to inform a policy decision. Frankel

and Kasy (2022) develop a model of a Bayesian decision-maker who has a prior distribution over

possible treatment outcomes and updates their beliefs using evidence from published studies

before making a policy decision. When publication entails a cost (e.g. the opportunity cost of

drawing attention away from other studies), the optimal rule is to publish only ‘extreme’ results

that sufficiently move prior beliefs. This gives rise to a striking trade-off: selective publication

enhances policy relevance while at the same time deteriorating statistical credibility.

While selective publication may be optimal for a Bayesian decision-maker, in many sit-

uations, policymakers may be unable or unwilling to base decisions on prior beliefs about

treatment outcomes. For example, they may have insufficient information to form a reasonable

prior, or if when decisions are made by a group, prior beliefs of different group members may

conflict with one another. A common alternative to relying on prior beliefs is to introduce

ambiguity on the treatment outcomes and pursue robust decisions.

In this paper, we consider a policymaker that aims to minimize maximum regret (Savage,

1951; Manski, 2004), where regret equals the difference between the highest possible expected

welfare outcome given full knowledge of the true impact of all treatments and the expected

welfare attained by the statistical decision rule. We first characterize the minimax regret

decision rule of the policymaker in the presence of publication bias, and then derive the optimal

publication rule that minimizes the value of minimax regret. In contrast to the Bayesian

framework, we show that the optimal publication rule for minimax regret decision-makers is

completely non-selective i.e. publication decisions do not depend on statistical significance.

Importantly, non-selective publication implies valid statistical inference. Thus, in the minimax

regret framework, there exists no trade-off between policy relevance and statistical credibility.

Following Manski (2004), Stoye (2009), and Tetenov (2012), our model considers a policy-
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maker whose problem is to assign members of a population one of two treatments: a status quo

treatment and an innovative treatment. A study about the relative effectiveness of the treat-

ments is conducted. However, the study is only observed by the policymaker if it is published,

which may depend on its statistical significance. We consider the case where t-ratios in a sym-

metric interval around zero are censored with probability βp P r0, 1s e.g. statistical significance

at the 5% level implies that t-ratios between -1.96 and 1.96 will be published with probability

βp. Additionally, publication may also entail a cost c ě 0. We consider a policymaker who

correctly accounts for publication bias when choosing their statistical treatment rule (and later

consider a naive policymaker who does not account for it). If a study is published, the policy-

maker observes it and implements the innovative policy if its relative effect size is greater than

a chosen threshold value T . Alternatively, if a study is not published, then the policymaker

must act without evidence and implements the innovative treatment with probability δ0. The

policymaker chooses a statistical treatment rule – consisting of the threshold rule T and the

default action δ0 – that minimizes their maximum regret, that is, the expected welfare loss

relative to optimal welfare attained with knowledge of the true treatment effect.

We show that the minimax regret decision rule implements the innovative treatment if and

only if the published estimate of the relative efficacy of the innovative treatment is positive,

and randomizes between treatments with equal probability when no study is published i.e.

pT ˚, δ˚
0 q “ p0, 1

2
q. The intuition for this result follows from the two key factors. First, the

decision-maker’s welfare equally weighs Type I errors (from mistakenly implementing an inferior

treatment) and Type II errors (failing to implement the superior treatment). Second, the class of

publication rules we consider censors insignificant empirical results symmetrically around zero.

The first symmetry implies that the decision-maker will implement the innovative treatment

when the published evidence supports the innovative treatment having a positive effect, and

remain with the status quo treatment otherwise. Combined with the second symmetry, we can

conclude that when the study is published, the sign of the estimate (i.e., T ˚ “ 0) is sufficient for

the decision-maker to infer the sign of the effect, and when no study is published, the decision-

maker has no evidence regarding the sign of the relative treatment effect and will therefore

randomize between treatments.

Given the minimax regret rule of the decision-maker, we optimize the value of minimax

regret with respect to the publication rule. As the main result, we show that the resulting

optimal publication rule is to publish all results. This accords well with common intuition:

receiving evidence from a published study about the relative effectiveness of treatments allows

the policymaker to do better than in the case where no study is published and they must

randomize between treatments.

It is notable, however, that the opposite conclusion is reached when considering a Bayesian
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decision-maker, for whom the optimal publication rule censors relatively uninformative studies

that do little to move prior beliefs of the decision-maker (Frankel and Kasy, 2022). Two

differences account for this. First, publication costs enter the expected welfare function in the

Bayesian framework of Frankel and Kasy (2022), while they do not appear in the expression

for regret in our framework. This is because regret equals the probability of making an inferior

treatment choice multiplied by the magnitude of the loss from doing so. Neither quantity

is affected by publication costs. Put differently, publication costs are constant with respect

to the decision rule and therefore have no impact on regret. The second difference is that

Frankel and Kasy (2022) define null results in the Bayesian framework as those which do

not move prior beliefs. By contrast, there is no notion of prior beliefs in the minimax regret

framework. We instead use the common definition of null results as those which are statistically

indistinguishable from zero. Accordingly, we consider a class of symmetric publication rules

that yield no information about the sign of the true effect when studies are not published. Since

published studies will always provide some evidence on the sign of the true effect, the optimal

publication regime in terms of the regret criterion is to publish all the results.

Our results highlight that the optimal publication regime can change drastically depending

on what optimality criterion the policymaker pursues for policy choice. Which optimality

criterion is relevant in practice may depend on the factors such as behavioural axioms of

the decision-makers, availability of the prior belief of the policy effect, and/or the form of

publication bias relevant to the empirical literature of interest.

We consider three main extensions to the baseline model. Following Tetenov (2012), we first

extend the model to incorporate decision criteria that asymmetrically weigh Type I error (from

mistakenly implementing the inferior treatment) and Type II error (from mistaking rejecting a

superior treatment). We provide numerical evidence consistent with the conjecture the optimal

publication rule for minimax regret decision-makers with asymmetric regret criteria is also

non-selective.

Second, we consider a naive policymaker who, unlike the sophisticated policymaker in the

main analysis, does not account for publication bias when choosing their decision rule. Naive

policymakers could in some cases be more realistic than sophisticated policymakers, because

sophistication demands both knowledge of the publication rule and the ability to correctly ad-

just for it. In this model, the naive policymaker’s expected welfare (and regret) is misspecified

because they believe, erroneously, that there is no publication bias.1 We evaluate their subse-

quent decision rule based on the worse case scenario under correctly specified regret. We show

that minimax regret for the naive policymaker is weakly higher than for the sophisticated poli-

1This affects: (i) their beliefs about the distribution of the published estimates; and (ii) implies that they
make no inferences about the size of the treatment effect when no study is published.
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cymaker.2 Thus, in general, the naive policymaker chooses a non-optimal decision rule because

they fail account for publication bias.

The optimal publication rule in the main analysis assumes that the policymaker and the

journal have the same preferences, namely, to minimize maximum regret. In the third ex-

tension, we consider the optimal publication rule under misaligned preferences. In particular,

we consider the case where the policymaker chooses their decision rule to minimize maximum

regret, but where the journal chooses the publication rule to maximize welfare (under some

prior distribution for the policy’s effect). The main result shows that the journal’s optimal

action takes the form a simple threshold rule: publish all results if the cost c is sufficiently low;

otherwise, censor all null results. Thus, in the case where publication costs are low, the optimal

publication rule under misaligned preferences is the same as with aligned preferences. However,

when publication costs are high, it is possible that censoring all null results is optimal.

Related Literature. This article contributes to the literature on statistical decision theory

(Manski, 2004; Stoye, 2009; Tetenov, 2012). It generalizes the canonical model in the minimax

regret framework to incorporate publication bias against null results. We characterize the

optimal decision rule that minimizes maximum regret and extend results to the case where

Type I and Type II error are weighted asymmetrically. Our model coincides with the canonical

model in the special case where there is no publication bias.

This article also contributes to the meta-science literature on publication bias and optimal

publication rules (Ioannidis, 2005; Andrews and Kasy, 2019; Miguel and Christensen, 2018;

Frankel and Kasy, 2022). It is most closely related to Frankel and Kasy (2022), who examine

a similar problem in a Bayesian framework. In contrast to a Bayesian framework, where the

optimal publication rule selects only ‘extreme’ results for publication, we show in a minimax

regret framework that the optimal publication rule is completely non-selective.

II. Model

A. Setup

The policymaker’s problem is to assign two treatments to a population with observationally

identical members: the status quo treatment pt “ 0q and the innovative treatment pt “ 1q. Fol-

lowing Manski (2004), suppose that each member j in population J has a treatment response

function yjp¨q : t0, 1u Ñ Y mapping treatments into outcomes. The population is a probabil-

ity space pJ,Ω, P q. The probability distribution P ryp¨qs of the random vector yp¨q describes

2Minimax regret for the naive policymaker is strictly higher when the Type I and Type II error are unequally
weighted.
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treatment response across the population. The population is “large” in the sense that J is

uncountable and P pjq “ 0. Next, let Eryp1qs ´ Eryp0qs ” θ P Θ Ď R be the unknown average

treatment effect of the innovative treatment relative to the status quo treatment, with the

status quo treatment normalized to zero. When θ ą 0, the innovative treatment is preferred;

otherwise, the status quo treatment is preferred.

Evidence about θ may be observed by the policymaker in the form of a published study.

However, not all studies are necessarily published. Consider first a latent study (published or

unpublished), which is characterized by pX, σq, where X is the estimated treatment effect and

σ is the known standard error. We assume X is normally distributed on X “ R and normalize

σ “ 1, so thatX|θ „ Npθ, 1q. This assumption is motivated by the fact that study estimates are

widely assumed to be approximately normal in practice. The normalization is for notational

convenience, since σ is known and fixed. The journal observes the latent study pX, 1q and

decides the probability of publication according to their publication rule, p : X Ñ r0, 1s. Let

D “ 1 denote the event when a study is published and D “ 0 the event when it is not. We

consider the class of publication rules where absolute t-ratios below a critical threshold tα may

be published with a lower probability than those above that threshold:

Assumption 1 (Publication Selection Function). Let ppXq “ 1 ´ p1 ´ βpq ¨ 1r|X| ă tαs with

βp P r0, 1s.

The form of publication bias in Assumption 1 implies that published estimated treatment

effects follow a mixture of truncated normal densities, where the region below the critical

threshold of the density is down-weighted and the region above it is up-weighted. Denote the

cdf as

F px|θ,D “ 1q ”

şx

´8
ppyqϕpy ´ θqdy

ş

ppyqϕpy ´ θqdy
, (1)

where ϕpxq “ p2πq´1{2 expp2´1x2q is the probability density function of the standard normal

distribution.

The policymaker’s decision rule must cover two possible realizations of the publication

process: the event when the study is published (D “ 1) and event when it is not (D “ 0). Let

Z “ X ¨ D ` tmissingup1 ´ Dq and the statistical treatment rule be δ : Z Ñ r0, 1s, with

δpX,Dq “

$

&

%

δ1pXq if D “ 1

δ0 if D “ 0
(2)

That is, δpX,Dq maps study outcomes to treatment assignment proportions when the study

is published, and assigns a default action δ0 P r0, 1s when it is not.
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We first consider a sophisticated policymaker who knows the exact form of publication

bias and correctly accounts for it when choosing their optimal decision rule. For example,

a sophisticated policymaker could estimate pp¨q from a sample of studies in the published

literature (e.g. by using the Andrews and Kasy (2019) model). Their utility from treatment

rule δpX,Dq with treatment effect θ and observed data X is given by

U
`

δ, θ
˘

“ θDδ1pXq ` θp1 ´ Dqδ0 ´ Dc (3)

where c ě 0 represents the cost of publishing an article. Following Frankel and Kasy (2022), we

interpret this cost as the opportunity cost of directing the public’s limited attention away from

other studies. Welfare for a statistical decision rule δpX,Dq corresponds to a shared objective

by the policymaker and the journal. Expected welfare is obtained by integrating over possible

study outcomes:

W
`

δ, θ
˘

“

ż

U
`

δ, θ
˘

fpx1
|θqdx1

“θ ¨PrD “ 1|θs ¨Erδ1pXq|θ,D “ 1s ` θ ¨
`

1 ´PrD “ 1|θs
˘

δ0 ´PrD “ 1|θs ¨ c (4)

“W1pδ1, θq ` W0pδ0, θq ´PrD “ 1|θs ¨ c

where W1pδ1, θq “ θ ¨ PrD “ 1|θs ¨ Erδ1pXq|θ,D “ 1s is the welfare for the case that the

study is published, and W0pδ0, θq “ θ ¨
`

1 ´ PrD “ 1|θs
˘

δ0 is the welfare for the case that the

study is not published.

Finally, regret is given by the difference between the highest possible expected welfare

conditional on θ and the expected welfare under the treatment rule. Let W ˚pθq be the welfare

attained by the oracle rule δ1 “ δ0 “ 1pθ ą 0q. Then regret is given by

R
`

δ, θ
˘

“ W ˚
pθq ´ W

`

δ, θ
˘

“

$

’

’

&

’

’

%

´θ

ˆ

PrD “ 1|θs ¨Erδ1pXq|θ,D “ 1s ` p1 ´PrD “ 1|θsqδ0

˙

if θ ď 0

θ

ˆ

PrD “ 1|θs ¨
`

1 ´Erδ1pXq|θ,D “ 1s
˘

` p1 ´PrD “ 1|θsqp1 ´ δ0q

˙

if θ ą 0
(5)

That is, regret equals the magnitude of the loss |θ| multiplied by the expected probability

of assigning the inferior treatment choice. The expected probability of assigning the wrong

treatment is a weighted average of making the incorrect decision, where weights correspond

to different realizations of the publication process. Two points are worth noting. First, the

publication cost does not appear in the expression for regret because it is constant with respect
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to the policymaker’s decision rule. Second, this expression for regret reflects a sophisticated

policymaker who has complete knowledge of publication bias. In particular, the sophisticated

policymaker correctly accounts for publication when considering the distribution of the esti-

mated treatment effect X, and the probability that a study is or is not published. In a later

section, we study a naive policymaker who does not account for publication bias.

The expression for minimax regret can be further simplified by restricting the class of

decision rules for δ1pXq to threshold rules. As in Tetenov (2012) for the Gaussian signal case,

this restriction is innocuous since in terms of welfare W1pδ1, θq for published case, the class of

threshold rules is essentially complete, i.e., for any admissible rule δ1pXq in terms of W1pδ1, θq,

its welfare level can be replicated by a threshold rule.

Lemma 1 (Threshold Rules are Essentially Complete). Under Assumption 1, the class of

threshold decision rules δT1 pXq “ 1rX ą T s is essentially complete in terms of the welfare of

W1pδ1, θq.

With Lemma 1, any decision rule δ is fully characterized by a tuple pδT1 , δ0q. The first element

corresponds to the threshold rule 1rX ą T s and is applicable when a study is published. The

second element is a default action δ0 and is applicable when a study is not published. With

this simplification, we can rewrite regret for decision rule δ in equation (10) as

R
`

pδT1 , δ0q, θ
˘

“

$

’

’

&

’

’

%

´θ

ˆ

PrD “ 1|θs ¨ r1 ´ F pT |θ,D “ 1qs ` p1 ´PrD “ 1|θsqδ0

˙

if θ ď 0

θ

ˆ

PrD “ 1|θs ¨ F pT |θ,D “ 1q ` p1 ´PrD “ 1|θsq ¨ p1 ´ δ0q

˙

if θ ą 0

(6)

Finally, the optimal decision rule pT ˚, δ˚
0 q selects the rule which minimizes maximum regret:

pT ˚, δ˚
0 q “ arg min

pT,δ0qPRˆr0,1s
max
θPR

R
`

pδT1 , δ0q, θ
˘

(7)

III. Optimal Publication Rule For Minimax Regret

In this section, we first characterize the optimal minimax regret decision rule for the sophisti-

cated policymaker. Given this decision rule, we then show analytically that the optimal pub-

lication rule that minimizes the value of minimax regret is non-selective. Finally, we provide

numerical evidence that this result generalizes to the case where the policy-maker’s concerns

over Type I and Type II error are asymmetric. Proofs are in Appendix A.
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A. Optimal Minimax Regret Decision Rule

In the presence of publication bias, decision-makers must choose optimal actions for when

studies are published and when they are not. The following lemma characterizes the optimal

minimax regret decision rule:

Lemma 2 (Minimax Regret Decision Rule Under Publication Bias). Under Assumption 1 for

the sophisticated policymaker, pT ˚, δ˚
0 q “

`

0, 1
2

˘

for any βp P r0, 1s.

When a study is published, the optimal minimax decision rule implements the innovative

treatment if the published estimate is positive; and when no study is published, the policymaker

randomly choose between treatments with equal probability. With symmetric concern of Type

I and Type II error, the policymaker will implement the innovative treatment when there is

evidence that it is superior to the status quo treatment. When no study is published there

exists no such evidence and hence the policymaker randomizes between treatments. The only

information available to the policymaker when no study is published is that the difference in

the efficacy of treatments is likely to be small, since publication bias censors small effect sizes.

However, because publication bias is symmetric around zero, no information is gained about

which treatment might be superior. When the study is published, a positive estimate is more

likely to come from a positive true treatment effect, while a negative estimate is more likely to

come from a negative true treatment effect. Hence, the policymakers’ threshold rule implements

the innovative policy if and only if the signal is positive.

It is noteworthy that the optimal minimax regret threshold decision rule in the presence

of publication bias is identical to the case where there is no publication bias (Tetenov, 2012).

This is a consequence of the symmetry of the problem when Type I error and Type II error are

equally weighted by the policymaker.

B. Optimal Non-Selective Publication Rule

Given the minimax decision rule pT ˚, δ˚
0 q “

`

0, 1
2

˘

, what publication rule minimizes the value

of minimax regret? The following result provides the answer:

Proposition 1 (Non-Selective Optimal Publication Rule). Under Assumption 1, the value

of minimax regret is minimized for the sophisticated policymaker when the publication rule is

non-selective, that is, when βp “ 1.

The optimal publication rule for a minimax regret policymaker publishes all results. Thus,

under the optimal publication regime, the policymaker’s problem collapses into the standard

model with no publication bias in Tetenov (2012) where signals are normally distributed. The
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intuition behind this result is straightforward: publishing a study always provides useful infor-

mation about the relative effectiveness of the treatments, which allows the policymaker to do

better than in the case where no study is published and they randomize between choices.

This conclusion differs starkly from the optimal publication rule in a Bayesian framework.

Frankel and Kasy (2022) show that the optimal publication rule in a Bayesian model only

publishes extreme results, that is, results that move prior beliefs sufficiently. In this framework,

null results are defined as those which do not change the policy-maker’s prior. By contrast, the

minimax regret framework does not rely on a prior distribution about treatment efficacy and

thus this notion of ‘null results’ is not well-defined. Instead, we model publication bias based

on the common definition of results being statistically indistinguishable from zero (Assumption

1).

A second key difference across these frameworks is the role of publication costs. In the

Bayesian setting, publishing relatively uninformative results that do little to move the poli-

cymaker’s prior belief yields no benefits, while at the same time incurring a cost; it is thus

not optimal to publish such results. By contrast, in the minimax regret framework, the cost

parameter c does not appear in the expression for regret, as can be seen in equation (6). This

is because regret equals the size of the loss from making an inferior treatment choice, |θ|, mul-

tiplied by the probability of this occurring. Since the expected cost of publication is the same

irrespective of the decision rule, the expression for regret does not include it. Thus, publication

costs have no impact on the minimax decision rule and therefore the optimal publication rule.

C. Type I Error Loss Aversion

Up until now, we have made the implicit assumption of equal weight for Type I error (of

mistakenly implementing an inferior policy) and Type II error (of failing to implement the

superior policy). However, in practice, policymakers may exhibit loss aversion and weigh the

regret from Type I error higher relative to Type II error. In fact, Tetenov (2012) finds that

classical hypothesis testing at the 5% level is consistent with a policymaker who weighs the

regret from Type I error around 100 times more than the regret arising from Type II error.

To incorporate this asymmetry in the concern over different types of error, we follow Tetenov

(2012) and introduce a Type I error loss aversion parameterK ą 0. With this, the policymakers

utility is given by

U
`

δ, θ, c
˘

“

$

&

%

K
´

θDδ1pXq ` θp1 ´ Dqδ0 ´ Dc
¯

if θ ď 0

θDδ1pXq ` θp1 ´ Dqδ0 ´ Dc if θ ą 0
(8)

Expected welfare is given by
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W
`

δ, θ, c
˘

“

$

&

%

K
´

θ ¨PrD “ 1|θs ¨Erδ1pXq|θ,D “ 1s ` θ ¨
`

1 ´PrD “ 1|θs
˘

δ0 ´PrD “ 1|θs ¨ c
¯

if θ ď 0

θ ¨PrD “ 1|θs ¨Erδ1pXq|θ,D “ 1s ` θ ¨
`

1 ´PrD “ 1|θs
˘

δ0 ´PrD “ 1|θs ¨ c if θ ą 0

(9)

and regret is equal to

R
`

δ, θ
˘

“ W
`

1pθ ą 0q, θ
˘

´ W
`

δ, θ
˘

“

$

’

’

&

’

’

%

´Kθ

ˆ

PrD “ 1|θs ¨Erδ1pXq|θ,D “ 1s ` p1 ´PrD “ 1|θsqδ0

˙

if θ ď 0

θ

ˆ

PrD “ 1|θs ¨
`

1 ´Erδ1pXq|θ,D “ 1s ` p1 ´PrD “ 1|θsqp1 ´ δ0q
˘

˙

if θ ą 0
(10)

What is the optimal publication rule for different levels of loss aversion for Type I error

K? Figure 1 plots minimax regret as a function of βp for different values of K, in addition to

the optimal minimax decision rule in each case. These figures are computed numerically. As a

benchmark, the first column shows the regime where K “ 1. First, see that minimax regret is

decreasing βp, in line with Proposition 1. Second, see that the optimal minimax regret decision

rule is pT ˚, δ˚
0 q “ p0, 1

2
q for all βp P r0, 1s, in line with Lemma 2.

Now consider the case where K “ 3 i.e. the policymaker weighs the Type I error of imple-

menting the inferior treatment three times larger than the Type II error of failing to implement

the superior treatment. As in the case where K “ 1, minimax regret is also decreasing in βp.

See that the threshold rule is increasing in βp. Similarly, the default probability of implement-

ing the innovative policy in the event that a study Just not published, δ˚
0 , is decreasing in βp

(and weakly less than 1
2
). That is, as βp gets larger, the policymakers decision rule becomes

more conservative with respect to assigning the innovative treatment. The intuition behind this

is that as βp increases, the possibility of noisier small effect being published increases, which

increases the risk of committing Type I error.

Finally, consider the case where K “ 102.4, which is the value that rationalizes hypothesis

testing at the 5% significance level (Tetenov, 2012). Again, the level of minimax regret decreases

as a the relative probability of publishing null results increases. Given the very high level of

Type I loss aversion, the no-data rule is essentially zero for any value of βp. Again, the threshold

rule is increasing in βp, and at a faster rate than as for the case where K “ 3.

These are two particular cases. Numerical results for other values ofK show similar patterns,

namely, that the value of minimax regret is a decreasing function of βp. Based on this, we

conjecture that the optimal publication rule minimizing maximum regret being non-selective

generalizes to any K ě 1, although we do not have at present an analytical proof.
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Figure 1. Minimax Regret and Optimal Decision Rule for Different Value of K

IV. Naive Policymakers

The sophisticated policymaker knows the exact form of publication bias and can accurately

account for it. This is a strong assumption. As an alternative, we may consider a policymaker

who naively chooses their decision rule without accounting for selective publication. This is

perhaps more realistic, in the sense that most published research reports standard errors and

assumes (approximately) normally distributed treatment effects for inference. ‘Naiveity’ im-
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pacts both realizations of the publication process. When a study is published, the policymaker

erroneously believes it is normally distributed; and in the event that a study is not published,

the naive policymaker fails to account for censoring in the publication process when choos-

ing their default action. As in the sophisticated policymaker’s problem, a decision rule δ is

equivalent to the tuple pT, δ0q. The naive policymaker’s misspecified welfare is equal to

ĂW
`

pT, δ0q, θq “

$

&

%

θr1 ´ Φ
`

T ´ θ
˘

s if D “ 1

θ ¨ δ0 if D “ 0
(11)

This gives rise to two misspecified regret expressions. First, in the event that a study is

published

rR1

`

T, θq “

$

&

%

´θr1 ´ Φ
`

T ´ θ
˘

s if θ ď 0

θΦ
`

T ´ θ
˘

if θ ą 0
(12)

and second, in the event that no study is published,

rR0

`

δ0, θq “

$

&

%

´θδ0 if θ ď 0

θp1 ´ δ0q if θ ą 0
(13)

Misspecified regret in equation (12) when a study is published is equivalent to the expression

for regret in the model in Tetenov (2012) with normally distributed signals. This expression is

misspecified because the policymaker does not account for the fact that selective publication

distorts the distribution of estimated treatment effects. Misspecified regret when no study

arrives, in equation (13), is simply a function of the default action δ0 and the true effect θ.

It is misspecified in that it ignores that possibility that a study was not published because of

selective publication. For the minimax problem to be well-defined, we need to impose bounds

on θ. For the naive policymaker, we impose the following assumption:

Assumption 2 (Symmetric Bounds on Average Treatment Effect). Let the support of Θ be

r´B,Bs for some B ą θ˚ ą 0, where θ˚ “ argmaxθą0

␣

θ ¨ Φp0 ´ θq
(

.

The technical condition that the bound is larger than θ˚ “ argmaxθą0

␣

θ ¨ Φp0 ´ θq
(

en-

sures that the minimax problem when a study is published is not constrained by the bound.3

The naive policymaker has, in effect, two decision problems, one for each realization of the

publication process.

T ˚
“ argmin

TPR
max

θPr´B,Bs

rR1pT, θq (14)

3Tetenov (2012) shows that the maximum θ˚ is attained on a closed interval r0, Hs for some H ą 0.
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δ˚
0 “ argmin

δ0Pr0,1s

max
θPr´B,Bs

rR0

`

δ0, θ
˘

(15)

While pT, δ0q are chosen by the naive policymaker under misspecified beliefs about the DGP,

regret of any decision rule is assessed against the ‘true’ worst-case scenario which accounts for

publication bias. That is, regret for any decision rule pT, δ0q is identical to regret in the

sophisticated policymaker’s problem in equation (6).

To compare the ‘cost’ of naivity with respect to publication bias, we make the following

calculation for some fixed K and assuming that tα “ 1.96:

100 ¨

ˆ

MMR˚
NaivepKq

MMR˚
SophpKq

´ 1

˙

(16)

where MMR˚
NaivepKq is the value of minimax regret for the naive policymaker and MMR˚

SophpKq

is the value of minimax regret for the sophisticated policymaker.

Figure 2 illustrates the cost of naivity when K “ 3. Results show that the cost of naivity

if weakly positive. This is to be expected, since the naive planner chooses their decision rule

under misspecified beliefs. Interestingly, the results show that the costs of naivety are highest

when publication bias is moderate. When there is no publication bias, the cost of naivety is zero

because the naive policymaker belief that there is no publication bias is correct in this special

case. More surprisingly, the cost of naivety is also zero when there is extreme publication bias,

such that no insignificant results are published. This is because the optimal threshold rule

when the study is published is set identified and the solution for the naive policymaker and

the sophisticated policymaker both fall within this set. In particular, any threshold rule above

which the innovative treatment is implemented in the range of (-1.96σ, 1.96σ) will be effectively

identical, because no insignificant studies within this range are ever published.
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Figure 2. Cost of Naivity (K “ 3)

V. Misaligned Preferences

In the main analysis, the policymaker chooses a decision rule to minimize maximum regret, and

we consider the optimal publication rule of a journal editor who chooses βp P r0, 1s with the

same preferences. In this extension, we consider what happens when the policymaker and the

journal editor do not have aligned preferences. In particular, we continue to assume that the

policymaker optimizes using minimax regret, but instead consider a journal editor who chooses

βp P r0, 1s to maximize welfare under a Bayesian prior. Since the policymakers’ decision rule
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could in theory depend on the journal editor’s choice for βp, we can view the equilibrium

outcome as resulting from a game between the editor and the policymaker. However, since

Lemma 2 shows that the minimax decision rule is the same for any value of βp P r0, 1s, there

are no strategic considerations at play. Throughout, we assume that Type I and Type II error

are equally weighted (K “ 1).

More formally, for the policymaker’s decision rule δ and publication cost c, the Bayesian

journal editor’s problem is given by

max
βpPr0,1s

ż

W
`

δ, θ, c
˘

πpθqdθ (17)

where welfare is given by equation 4 and πp¨q denotes the prior belief distribution of the journal

editor. We assume that the prior satisfies the following regularity conditions:

Assumption 3 (Support of Journal Editor’s Prior). Let the prior distribution πp¨q have support

on an open subset of the real line.

Recall the policymaker’s optimal minimax rule from Lemma 2 and that it is identical for

under both sophisticated and naive beliefs when K “ 1. The following Proposition gives the

optimal publication rule of the Bayesian journal editor:

Proposition 2 (Optimal Bayesian Publication Rule). Suppose the policymaker implements

the optimal minimax regret decision rule pT ˚, δ˚
0 q “ p0, 1

2
q. Under Assumptions 1 and 3, the

Bayesian journal editor’s optimal publication rule for any c ě 0 is given by

β˚
p “

$

&

%

1 if c ď T

0 if c ą T
(18)

where

T “

1
2

ş

θ
´

“

Φptα ´ θq ´ Φp´θq
‰

´
“

Φp´θq ´ Φp´tα ´ θq
‰

¯

πpθqdθ
ş “

Φptα ´ θq ´ Φp´tα ´ θq
‰

πpθqdθ
ą 0

The journal’s optimal action takes the form a simple threshold rule: publish all results if

publication costs are sufficiently low; otherwise, censor all null results. Thus, when publication

costs are low, the optimal publication rule under misaligned preferences is the same as with

aligned preferences, namely, it is non-selective. However, when publication costs are high, it

will be optimal to censor all null results.

For the Bayesian policymaker in the Frankel and Kasy (2022) model, the optimal publication

rule recommends censoring results which do not sufficiently move the prior. In other words,
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the journal does not publish ‘unsurprising’ findings close to its prior beliefs on a given research

question (which is assumed to be shared by the public). Our result in Proposition 2 differs

because we consider the class of publication rules which censor statistically insignificant results.

The rationale behind this is that the censoring of null results is the most common form of

publication bias highlighted in the literature.

VI. Conclusion

This paper studies treatment choice in the presence of publication bias in the case where poli-

cymakers are unwilling or unable to rely on prior beliefs about relative treatment efficacy. We

show that the optimal publication rule which minimizes maximum regret is non-selective. This

holds whether or not policymakers account for publication bias in choosing their treatment rule

i.e. whether they are sophisticated or naive in their beliefs about the DGP. This contrasts with

the Bayesian policymaker studies in the literature, where the optimal publication rule for policy

choice censors results close to the decision-maker’s prior. Thus, the optimal publication regime

– and hence the statistical credibility of published research – can vary drastically depending

on the optimality criterion pursued by the policymaker and journals. In the minimax frame-

work, the publication regime which is optimal for treatment choice also delivers valid statistical

inference.
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A. Proofs

Proof of Lemma 1: We focus on the welfare function W1pδ1, Xq for the published case.

Karlin and Rubin (1956) shows that if the distribution of sufficient statistics for θ satisfies the

monotone likelihood ratio property, the class of threshold decision rules is essentially complete

for a class of loss functions including the current one. Under Assumption 1, F pX|θ,D “ 1q is

an exponentially family distribution with pdf

Cpθqhpxq exppxθq, (19)

where Cpθq “
expp´θ2{2q

?
2π

ş

pptqϕpt´θqdt
and hpxq “ ppxq expp´x2{2q, and X being a sufficient statistics

for θ. Since the exponential family distribution satisfies the monotone likelihood ratio property

(see, e.g., Section 3.4 in Lehmann and Romano (2005)), the current lemma follows.

Proof of Lemma 2: The proof follows two main steps. First, we solve the minimax problem

for the sophisticated policymaker. In the second step, we show that the naive policymaker,

who optimizes under misspecified beliefs about the DGP, nonetheless arrives at the optimal

solution.

Sophisticated policymaker.—First, we show that the optimal decision rule for the sophisti-

cated policymaker is pT ˚, δ˚
0 q “

`

0, 1
2

˘

. To do this, we use the following theorem (for reference,

see Theorem 1 in section 2.11 (pg 90) in Ferguson (1967)):

Lemma A.1. Suppose δ minimizes Bayes risk under π:

δ P arg min
δ1PD

ż

θ

Rpδ1, θqdπpθq

and

Rpδ, θq ď

ż

θ

Rpδ, θqdπpθq

for all θ P Θ. Then δ is a minimax rule and π is least favourable.

Using this lemma, we first propose a guess for δ and π and then show that this guess satisfies

the sufficient conditions in Theorem A1 which imply that δ is the minimax regret decision rule.

Our guess is that the minimax regret decision rule is pT ˚, δ˚
0 q “ p0, 1

2
q. Regret under this

proposed rule for any θ is equal to:
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R
`

p0, 0.5q, θ
˘

“

$

’

’

&

’

’

%

´θ

ˆ

PrD “ 1|θs ¨ r1 ´ F p0|θ,D “ 1qs ` p1 ´PrD “ 1|θsq1
2

˙

if θ ď 0

θ

ˆ

PrD “ 1|θs ¨
`

F p0|θ,D “ 1q ` p1 ´PrD “ 1|θsq1
2

˘

˙

if θ ą 0

(20)

Next, guess that Nature’s least favorable prior is equal to

π “

$

&

%

θ˚
` with probability 1

2

´θ˚
` with probability 1

2

(21)

where θ˚
` “ argmaxθą0R

`

p0, 0.5q, θ
˘

. We know that θ˚
` P p0,8q because R

`

p0, 0.5q, 0q “ 0;

R
`

p0, 0.5q, θq Ñ 0 as θ Ñ 8; and R
`

p0, 0.5q, θq ą 0 for any θ ą 0. The first and third claims

can be seen directly from equation (20). To see why the second claim is true see that

lim
θÑ8

#

θ ¨PrD “ 1|θs ¨ F p0|θ,D “ 1q

+

`
1

2
lim
θÑ8

#

θ ¨ p1 ´PrD “ 1|θsq
˘

+

(22)

The first term equals zero because

lim
θÑ8

#

θ ¨PrD “ 1|θs ¨ F p0|θ,D “ 1q

+

ă lim
θÑ8

#

θ ¨ Φp0 ´ θq

+

“ lim
θÑ8

#

θ2 ¨ ϕp0 ´ θq

+

“ 0 (23)

where the first inequality follows because F p.|θ,D “ 1q is a truncated normal cdf and θ ą 0;

the second last equality follows from L’Hôpital’s rule; and the final equality follows from the

fact that θ2 ¨ ϕp0 ´ θq has finite moments. The second term also equals zero since we have

θ ¨ p1 ´PrD “ 1|θsq
˘

“ p1 ´ βpqp2πq
´1

ż tα

´tα

θ exp

ˆ

´
1

2
pt ´ θq

2

˙

dt (24)

and limθÑ8 θ exp
`

´1
2
pt ´ θq2

˘

“ 0 at every t P r´tα, tαs, and apply the dominated convergence

theorem.

Next, we will show that pT ˚, δ˚
0 q “ p0, 1

2
q minimizes Bayes risk with respect to π. For any

decision rule pT, δ0q, Bayes risk equals

ż

θ

R
`

pT, δ0q, θ
˘

dπpθq “
1

2
¨ θ˚

`

ˆ

PrD “ 1|θ˚
`s ¨ F pT |θ˚

`, D “ 1q ` p1 ´PrD “ 1|θ˚
`sqp1 ´ δ0q

˙
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`
1

2
¨ θ˚

`

ˆ

PrD “ 1|θ˚
`s ¨ r1 ´ F pT |θ˚

`, D “ 1qs ` p1 ´PrD “ 1|θ˚
`sqδ0

˙

“
1

2
¨ θ˚

`

´

1 ´PrD “ 1|θ˚
`s

¯

`
1

2
¨ θ˚

`PrD “ 1|θ˚
`s

´

F pT |θ˚
`, D “ 1q ` F p´T |θ˚

`, D “ 1q

¯

(25)

Note that any δ0 is optimal, so we can choose δ˚
0 “ 1

2
. We will show that T ˚ “ 0 minimizes

Bayes risk by showing that F pT |θ˚
`, D “ 1q ` F p´T |θ˚

`, D “ 1q is minimized when T “ 0. To

do this, we will show that any other choice of T leads to higher regret. Since the Bayes risk

under π (25) is symmetric in T , without loss of generality, we assume T ą 0. Consider first the

case where T ą tα ą 0. We have

F p´T |θ˚
`, D “ 1q ` F pT |θ˚

`, D “ 1q “
1

C

ˆ

Φp´T ´ θ˚
`q`

`Φp´T ´ θ˚
`q `

“

Φp´tα ´ θ˚
`q ´ Φp´T ´ θ˚

`q
‰

`βp

“

Φp0 ´ θ˚
`q ´ Φp´tα ´ θ˚

`q
‰

` βp

“

Φptα ´ θ˚
`q ´ Φp0 ´ θ˚

`q
‰

`
“

ΦpT ´ θ˚
`q ´ Φptα ´ θ˚

`q
‰

˙

ą
2

C

ˆ

Φp´tα ´ θ˚
`q ` βp

“

Φp0 ´ θ˚
`q ´ Φp´tα ´ θ˚

`q
‰

˙

“ 2 ¨ F p0|θ˚
`, D “ 1q (26)

where C “
ş

ppzqϕpz´θ˚
`qdz is the normalization constant of the truncated normal distribution.

The case where tα ą T ą 0 follows a similar argument. Thus, pT ˚, δ˚
0 q “ p0, 1

2
q minimizes Bayes

risk with respect to π.

Finally, see that for any θ P R, we have that

R
`

p0, 0.5q, θ
˘

ď R
`

p0, 0.5q, θ˚
`

˘

“
1

2
R
`

p0, 0.5q, θ˚
`

˘

`
1

2
R
`

p0, 0.5q,´θ˚
`

˘

“

ż

θ

Rpδ, θqdπpθq (27)

The first inequality follows from the construction of θ˚
`. The next equality uses the symmetry

of the regret function with respect to θ around zero. From Theorem A1, it then follows that

the minimax regret decision rule for the sophisticated policymaker is pT ˚, δ˚
0 q “ p0, 1

2
q and the

least favourable prior is π in equation (21).

Naive policymaker.—Next, we show that the naive policymaker arrives at the same decision

rule, despite ignoring selective publication. The naive policymaker’s optimal decision rule

consists of two problems, when a study is published and when it is not. When a study is

published, the policymaker (erroneously) believes the signal is normally distributed. This is

equivalent to the problem in Tetenov (2012), who proves that the optimal solution in the

symmetric case is T ˚ “ 0.

Next, consider the case where no study is published. Misspecified regret is equal to
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rR0pδ0, θq “

$

&

%

´θδ0 if θ ď 0

θp1 ´ δ0q if θ ą 0
(28)

and thus misspecified worse-case regret given bounds in Assumption 2 is given by

maxθPr´B,Bs
rR0pδ0, θq “ maxtBθ0, Bp1 ´ δ0qu. The minimax regret decision rule equalizes the

arguments in the max operator, giving δ˚
0 “ 1

2
.

Proof of Proposition 1: We have shown that for any βp P r0, 1s, both the sophisticated and

naive policymakers’ optimal minimax decision rule is pT ˚, δ˚
0 q “ p0, 1

2
q. It remains to show that

βp “ 1 is the optimal publication rule, in the sense that it minimizes minimax regret.

Denote the value of minimax regret as a function of parameter βp:

V pβpq ” max
θą0

#

θ

ˆ

PrD “ 1|θsF p0|θ,D “ 1q `
`

1 ´PrD “ 1|θs
˘1

2

˙

+

(29)

“ max
θą0

"

θ

ż 0

´8

ppyqϕpy ´ θqdy `
θ

2

ż 8

´8

r1 ´ ppyqsϕpy ´ θqdy

*

,

“ max
θą0

fpθ, βq, (30)

where fpθ, βq “ θ
ş0

´8
ppyqϕpy ´ θqdy ` θ

2

ş8

´8
r1 ´ ppyqsϕpy ´ θqdy and its dependence on βp is

only through pp¨q.

Note that the value function inside the maximum operator is continuously differentiable

in βp with an integrable envelope over the domain of βp P r0, 1s. Hence, by the generalized

envelope theorem (Theorem 2 in Milgrom and Segal (2002)), V pβpq is absolutely continuous

and admits the following integral representation:

V pβpq “ V p0q `

ż βp

0

fβppθ˚
pβ1

pq, β1
pqdβ1

p, (31)

where fβpp¨, ¨q “ B

Bβ
fpθ, βq and θ˚pβpq is a maximizer of fpθ, βpq in θ given βp. Note that for

θ ą 0, we can show

fβppθ, βpq “
θ

2

„
ż 0

´tα

ϕpy ´ θqdy ´

ż tα

0

ϕpy ´ θqdy

ȷ

ă 0. (32)

To see this inequality holds, consider two cases. First, suppose that θ ě tα. Then we immedi-

ately get the desired result because ϕpz ´ θq is strictly increasing over p´tα, tαq.
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Next consider the case where θ P p0, tαq. Then
şθ

0
ϕpy´θqdy ą

ş0

´θ
ϕpy´θqdy since ϕpy´θq is

strictly increasing in y for any y ă θ. And we also have that
ştα
θ
ϕpy´θqdy “

şθ

2θ´tα
ϕpy´θqdy ą

ş´θ

´tα
ϕpy ´ θqdy, where the first equality uses symmetry of the normal distribution about θ and

the second equality again uses the fact that ϕpy ´ θq is strictly increasing in y for any y ă θ.

Taking these two inequalities together leads to the inequality of (32).

Combining (31) and (32), we conclude that V pβpq is a monotonically decreasing function,

and βp “ 1 minimizes the value of minimax regret.

Proof of Proposition 2: Fix the optimal minimax rule for the policymaker: δ˚ “ pT ˚, δ˚
0 q “

p0, 1
2
q. Then

ż

W
`

δ˚, θ, c
˘

πpθqdθ “

ż

θ ¨PrD “ 1|θ, βps
“

1 ´ F p0|D “ 1, θ, βpq
‰

πpθqdθ

`
1

2

ż

θ ¨
`

1 ´PrD “ 1|θ, βps
˘

πpθqθ ´ c

ż

PrD “ 1|θ, βpsπpθqdθ

Now see that
B

Bβp

ˆ

PrD “ 1|θ, βps

˙

“ Φptα ´ θq ´ Φp´tα ´ θq

B

Bβp

ˆ

F p0|D “ 1, θ, βpq ¨PrD “ 1|θ, βps

˙

“ Φp´θq ´ Φp´tα ´ θq

which implies that

B

Bβp

„
ż

W
`

δ˚, θ, c
˘

πpθqdθ

ȷ

“
1

2

ż

θ
´

“

Φptα ´ θq ´ Φp´θq
‰

´
“

Φp´θq ´ Φp´tα ´ θq
‰

¯

πpθqdθ

´c

ż

“

Φptα ´ θq ´ Φp´tα ´ θq
‰

πpθqdθ

It is clear that the integral in the second term multiplied by c is positive. If the integral in

the first term is strictly positive, then the desired result clearly follows. That is, for sufficiently

low c, the derivative will be positive and the optimal rule will be β˚
p “ 1. Conversely, for

sufficiently high c, the derivative will be negative and the optimal publication rule will be

β˚
p “ 0.

In the remainder of the proof, we show the integral is indeed positive. For clarity, define

the integrand gpθq ” θ
`

rΦptα ´ θq ´ Φp´θqs ´ rΦp´θq ´ Φp´tα ´ θqs
˘

. First, see that gp0q “ 0.

However, Assumption 3 implies that there exists some θ ‰ 0 on the support of πp¨q. Thus, to

show that the integral is positive, it suffices to show that gpθq ą 0 for all θ ‰ 0.

To show this, first note that gp¨q is symmetric about zero i.e. gpθq “ gp´θq. We can

therefore restrict our attention to θ ą 0. Consider two cases. First, suppose tα ´ θ ď 0. Then
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gpθq ą 0 if and only if rΦptα ´ θq ´ Φp´θqs ´ rΦp´θq ´ Φp´tα ´ θqs ą 0, which clearly holds

because the normal density is increasing over p´8, 0q.

Next, suppose that tα ´ θ ą 0 ðñ tα ą θ ą 0. Then breakup up the integral and using

the symmetry of the normal density, we have

gpθq “ rΦptα ´ θq ´ Φp´θqs ´ rΦp´θq ´ Φp´tα ´ θqs

“

ˆ

rΦptα ´ θq ´Φp0qs ` rΦp0q ´Φp´θqs

˙

´

ˆ

rΦp´θq ´Φp´2 ¨ θqs ` rΦp´2 ¨ θq ´Φp´tα ´ θqs

˙

“

ˆ

rΦp0q ´Φp´θqs ´ rΦp´θq ´Φp´2 ¨ θqs

˙

`

ˆ

rΦptα ´ θq ´Φp0qs ´ rΦptα ` θq ´Φp2 ¨ θqs

˙

ą 0

where the inequality follows because both differences in the parentheses are strictly positive.

The first difference is positive because the normal density if increasing over p8, 0q. The second

difference is positive because the normal density if decreasing over p0,8q.


