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Abstract

Many explanations have been offered for why replication rates are low in

the social sciences, including selective publication, p-hacking, and treatment

effect heterogeneity. This article emphasizes that issues with common power

calculations in replication studies may also play an important role. Theoret-

ically, I show in a simple model of the publication process that issues with

the way that replication power is commonly calculated imply we should al-

ways expect replication rates to fall below their intended power targets, even

when original studies are unbiased and there is no p-hacking or treatment ef-

fect heterogeneity. Empirically, I find that a parsimonious model accounting

only for issues with power calculations can fully explain observed replication

rates in experimental economics and social science, and two-thirds of the

replication gap in psychology. (JEL C18, C53, C90)

1. Introduction

In a 2016 survey conducted by Nature, 90% of researchers across various fields agreed that the

scientific community faces a ‘reproducibility crisis’ (Baker, 2016). Growing consensus has been

supported by high-profile replication projects which find that the replication rate – i.e. the

fraction of replications that are significant with the same sign as the original study – is just

36% in psychology, 61% in experimental economics, and 62% in experimental social science

(Open Science Collaboration, 2015; Camerer et al., 2016, 2018).

Understanding the underlying cause of low replication rates is important for researchers

and reformers aiming to improve the credibility of published research. There is a large lit-

erature examining a wide range of explanations, including selective publication against null

results (Franco et al., 2014; Open Science Collaboration, 2015; Camerer et al., 2016, 2018);
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p-hacking and other questionable research practices (Ioannidis, 2005, 2008; Simonsohn et al.,

2014; Brodeur et al., 2016, 2020, 2022; Elliott et al., 2022); and heterogeneity across original

studies and replications in research design and experimental subjects (Higgins and Thompson,

2002; Cesario, 2014; Simons, 2014; Stanley et al., 2018; Bryan et al., 2019).

In this article, the main theoretical result shows that we should expect the replication rate

to fall short of its intended target, owing to issues with the common approach of setting power

in replications. This is true regardless of whether or not there is selective publication, and even

in ‘ideal’ conditions with no p-hacking, no heterogeneity, and relatively high statistical power in

original studies (e.g. 80%). Let RP px, σr|θq be the probability of successfully replicating a study

with observed original effect size x and replication standard error σr conditional on unobserved

true effect θ. Replicators commonly set the replication standard error (or equivalently the

replication sample size) as a function of the observed effect size x, such that RP px, σrpxq|θq

equals a pre-specified intended power target 1´β when x “ θ (e.g. 1´β “ 0.9 would correspond

to 90% intended power target, where β is the target probability of Type II error). This approach

was used, for example, in large-scale replication studies in psychology and economics (Open

Science Collaboration, 2015; Camerer et al., 2016), and a survey of replications in the psychology

literature by Anderson and Maxwell (2017) shows that it is the most commonly implemented

approach. In practice, replication rates consistently fall below the intended power target 1´β,

which is commonly interpreted as an indicator that original effects are biased due to factors

such as selective publication, p-hacking, or treatment effect heterogeneity. However, this article

highlights that the replication function RP p¨|θq is a non-linear, locally concave function. Thus,

even if original estimates were unbiased, with EX|ΘrX|θs “ θ, by Jensen’s inequality we have

that EX|ΘrRP pX, σrpXq|θq|θs ă RP pθ, σrpθq|θq “ 1 ´ β. That is, stated replication rate

targets in large-scale replication studies using the approach described above do not provide

an attainable benchmark against which to judge replication rates observed in practice; even

if original studies were unbiased, such targets are not in fact reachable in expectation. I also

show that the gap between the expected replication rate and its intended power target is larger

when the original published studies have low power, a problem that we expect to be severe in

practice given evidence of low power in various empirical literatures from (Button et al., 2013;

Ioannidis et al., 2017; Stanley et al., 2018; Arel-Bundock et al., 2023).

The main theoretical result applies to studies using what I refer to as the common power rule,

which sets replication power to detect the original estimated effect size. More recently, some

studies have begun to use a higher-power variant which I refer to as the fractional power rule,

wherein replication power is set to detect some fraction of the estimated effect size. Building

on results in Andrews and Kasy (2019), I show that the expected replication rate using the

fractional power rule can be either above or below the stated power target.
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To what extent can these theoretical insights explain the low replication rates actually

observed in large-scale replication studies? Although the theory predicts that the actual repli-

cation rate will always fall below the target when using the common power rule, the magnitude

of this gap is an empirical question. Likewise, for replication studies using the fractional power

rule, both the sign and the magnitude of the gap is an empirical question.

To evaluate the importance of power issues in practice, I therefore empirically investigate

the results of three replication studies, two of which use the common power rule (Open Science

Collaboration, 2015; Camerer et al., 2016) and one of which uses the fractional power rule

(Camerer et al., 2018). In each application, I estimate the empirical model in Andrews and

Kasy (2019) using a ‘metastudy approach’ that corrects for publication bias to obtain the

underlying distribution of latent studies prior to screening by the publication process.1 I then

use the estimated latent distribution of studies to simulate what we should expect the replication

rate to be based on the power calculations actually implemented in replications. Importantly,

the model and its predictions are based only on data from original studies and assume away

researcher manipulation and heterogeneous treatment effects. The empirical exercise asks, in

effect, whether observed replication rates could have been predicted by issues with power alone,

before the replication studies themselves were actually undertaken and in a parsimonious model

without treatment effect heterogeneity or p-hacking.

I find that the predicted replication rate is almost identical to observed replication rates

in experimental economics (60% vs. 61%) and experimental social science (54% vs. 57%).

Replications in experimental economics implemented the common power rule, while those in

experimental social science used a fractional power rule.2 These empirical results are consistent

with the null hypothesis that observed replication rates in these studies are driven entirely by

issues with power calculations, rather than other issues such as p-hacking or treatment effect

heterogeneity. Of course, failure to reject a hypothesis does not mean that it is true, and thus

we should not necessarily conclude that these other factors are not present in these settings.

Nevertheless, other evidence has also suggested a relatively limited role for p-hacking in the

context of lab experiments studied here (Brodeur et al., 2016, 2020; Imai et al., 2020).

In psychology, the predicted replication rate is 55%, whereas the observed replication rate

is 35%. Since the intended power target was 92%, issues with power calculations explain

1It is necessary to model publication bias to estimate the latent distribution of studies. However, for a
given latent distribution of studies, the replication rate itself does not depend on the degree to which selective
publication suppresses insignificant results (Andrews and Kasy, 2019; Kasy, 2021). This is for the simple reason
that the replication rate only includes significant results in its definition. See Section I.B below for additional
discussion.

2In the experimental social science replications (Camerer et al., 2018), replicators used a fractional power
rule in the first stage of replications predicted here, where replication power was set to detect 75% of the original
effect size with 90% intended power.
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only two-thirds of the gap in psychology. In the case of psychology, we can therefore reject

the null that the replication gap is entirely explained by issues with power calculations. This

provides strong evidence that some other factors are important in psychology. Some possibilities

discussed in the literature include heterogeneous treatment effects, p-hacking, and differences

across subfields.

In an extension, I examine the relative effect size (defined as the mean of the ratio of

the replication effect size and the original effect size), a common complementary continuous

measure of replication. I generate relative effect size predictions in each field using a similar

method as for the replication rate. I once again find that the predictions are quite similar to

observed outcomes in economics (0.70 vs. 0.66). The model is somewhat farther off for social

sciences (0.53 vs. 0.44), perhaps suggesting some role for other factors, although the difference

is not statistically distinguishable from zero. In psychology, predictions are quite far off (0.64

vs. 0.37), again providing strong evidence for alternative factors.

This article contributes to the large metascience literature and the growing literature on

predicting research outcomes (Ioannidis, 2005; Franco et al., 2014; Gelman and Carlin, 2014;

Dreber et al., 2015; Maxwell et al., 2015; Anderson and Maxwell, 2017; Stanley et al., 2018;

Miguel and Christensen, 2018; Altmejd et al., 2019; Amrhein et al., 2019; DellaVigna et al.,

2020; Gordon et al., 2020; Frankel and Kasy, 2022; DellaVigna and Linos, 2022; Nosek et al.,

2022). Andrews and Kasy (2019) and Kasy (2021) provide stylized examples showing that the

replication rate can vary widely depending on the latent distribution of studies (i.e. the joint

distribution of true effects and standard errors for published and unpublished studies). The-

oretically, this article builds on this observation by establishing that the expected replication

rate is bounded above by its nominal target owing to issues with common power calculations in

replication studies. This result holds for any distribution of latent studies. Empirically, I pro-

vide evidence that among the profusion of explanations for low replication rates, a parsimonious

model accounting only for issues with replication power calculations and low power in original

studies can adequately account for observed replication rates in experimental economics and

social science.

2. Theory

2.1. Model of Large-Scale Replication Studies

I consider the model in Andrews and Kasy (2019). Suppose a large-scale replication study

is conducted in an empirical literature of interest and we observe the estimated effect sizes

and standard errors for original studies and their replications. Let upper case letters denote

random variables, lower case letters realizations. Latent studies (published or unpublished)
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have a superscript * and published studies have no superscript. The model of the DGP has

five steps:

1. Draw a population parameter and standard error: Draw a research question with

population parameter (Θ˚) and standard error (Σ˚):

pΘ˚,Σ˚
q „ µΘ,Σ

where µΘ,Σ is the joint distribution of latent true effects and latent standard errors.

2. Estimate the effect: Draw an estimated effect from a normal distribution with param-

eters from Stage 1:

X˚
|Θ˚,Σ˚

„ NpΘ˚,Σ˚2
q

3. Publication selection: Selective publication is modelled by the function pp¨q, which

returns the probability of publication for any given t-ratio. Let D be a Bernoulli random

variable equal to 1 if the study is published and 0 otherwise:

PpD “ 1|X˚
{Σ˚

q “ p

ˆ

X˚

Σ˚

˙

(1)

4. Replication selection: Replications are sampled from published studies pX,Σ,Θq (i.e.

latent studies pX˚,Σ˚,Θ˚q conditional on publication pD “ 1q). Replication selection is

modelled by the function rp¨q, which returns the probability of being chosen for replication

for any given t-ratio. Let R be a Bernoulli random variable equal to 1 if the study is

chosen for replication and 0 otherwise:

PpR “ 1|X{Σq “ r

ˆ

X

Σ

˙

(2)

5. Replication: A replication draw is made with:

Xr|Θ, X,Σ,Σr, D “ 1, R “ 1 „ N
´

Θ,Σ2
r

¯

We observe i.i.d draws of
`

X,Σ, Xr,Σr

˘

from the conditional distribution of
`

X˚,Σ˚, Xr,Σr

˘

given D “ 1 and R “ 1. I consider what happens in the Andrews and Kasy (2019) model

outlined above when the replication standard error, Σr, is set to detect the original estimate X

with a pre-specified power level 1 ´ β, where β is the target probability of Type II error. This

approach is implemented, for example, in Open Science Collaboration (2015) and Camerer et al.



6

(2016), and a survey of replications the psychology literature by Anderson and Maxwell (2017)

shows that it is the most commonly implemented approach. I refer to this as the common

power rule, which is formalized as follows:

DEFINITION 1 (Common power rule). The common power rule to detect original effect size

x with intended power 1 ´ β sets the replication standard error to

σrpx, βq “
|x|

1.96 ´ Φ´1pβq
(3)

This is equivalent to setting the replication sample size to N ˆ
“

σ
|x|

`

1.96´Φ´1pβq
˘‰2

, where

N and σ are the original study’s sample size and standard deviation, respectively.

The justification for the common power rule is that the power in any given replication

study will equal its intended power target of 1 ´ β when x “ θ.3 In practice, replication

rates consistently fall below this benchmark, which is typically taken as evidence that original

estimates are biased because of selective publication or p-hacking. While this argument has

intuitive appeal, it does not account for the fact that replication power is a non-linear function

of the random original estimate X; thus, even if ErX|Θ “ θs “ θ, the replication probability

evaluated at the expectation (which equals the intended target) will not, in general, be equal

to the expected replication rate.

This argument is developed more formally in the following section, under a number of

regularity conditions and assumptions imposed on the DGP. First, following Andrews and

Kasy (2019), we impose the normalization that true effects are positive:4

ASSUMPTION 1 (True effect normalization). The support of Θ is a subset of the non-negative

real line.

Second, we impose that the publication probability pp¨q is weakly increasing in the t-ratio

and symmetric around zero:

ASSUMPTION 2 (Publication selection function). Let pptq ‰ 0 for all |t| ě 1.96, pptq be weakly

increasing for all t ě 1.96, and pptq “ pp´tq for all t ě 1.96. Allow pp¨q to take any form when

t P p´1.96, 1.96q.

This allows for very general forms of publication bias (or lack thereof). Third, in step 4,

which models the replication selection mechanism, we assume that the set of significant results

chosen for replication is a random sample from published, significant results:

3For a formal statement and proof, see Lemma B1.
4Large-scale replications include studies that examine different questions and outcomes. Normalizing true

effects to be positive is justified because relative signs across studies are arbitrary.
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ASSUMPTION 3 (Replication selection function). For all |t| ě 1.96, let rptq “ c P p0, 1s and

allow rp¨q to take any form when t P p´1.96, 1.96q.

Finally, note that the article uses three distinct concepts of statistical power. First, power in

an original study is defined as the probability of obtaining a statistically significant estimate in

the same direction as the true effect.5 Second, power in a replication study (or the ‘replication

probability’) is defined as the probability of obtaining a significant effect with the same sign

as the original study (Definition 2 below), and will depend on the rule for setting replication

power (e.g. the common power rule). Finally, the intended power target of a given rule for

setting replication power, which we denote by 1 ´ β.

2.2. Common Power Calculations and Low Replication Rates

This section defines the replication rate and then discusses the main result. First, we define

the replication probability of a single study and then use this to define the expected replication

rate over multiple studies.

DEFINITION 2 (Replication probability of a single study). The replication probability of a

published study pX,Σ,Θq chosen for replication pR “ 1q is

RP
´

X,Θ, σrpX, βq

¯

“ P

˜

|Xr|

σrpX,Σ, βq
ě 1.96, signpXrq “ signpXq

ˇ

ˇ

ˇ
X,Θ, β, R “ 1

¸

(4)

This definition captures the dual requirement that the replication estimate is statistically

significant and has the same sign as the original study.

DEFINITION 3 (Expected replication rate). The expected replication probability is defined over

published studies pX,Σ,Θq which are chosen for replication pR “ 1q and statistically significant

pSX “ 1q. It is equal to

E

”

RP
`

X,Θ, σrpX, βq
˘ˇ

ˇR “ 1, SX “ 1
ı

(5)

Substituting the common power rule in Definition 1 for the replication standard error gives

the expected replication rate under the common power rule. Note that while insignificant

results may be replicated, they are not included in the replication rate in Definition 3, in line

with the main definition reported in most large-scale replication studies (Klein et al., 2014;

5The arguments made throughout are essentially unchanged if we consider the alternative definition of
obtaining a statistically significant estimate irrespective of the sign.
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Open Science Collaboration, 2015; Camerer et al., 2016, 2018; Klein et al., 2018).6 With this,

we can state the main theoretical result:

PROPOSITION 1 (The common power rule implies the expected replication rate is below

its target.) Consider the model in I.A. Under assumptions 1, 2, and 3, if replication standard

errors are set by the common power rule to detect original estimates with intended power 1´β ě

0.8314, then

E

”

RP
`

X,Θ, σrpX, βq
˘ˇ

ˇR “ 1, SX “ 1
ı

ă 1 ´ β (6)

From a practical perspective, Proposition 1 means that replicators who set the replication

sample size to detect original effect sizes should not expect the replication rate to reach its

intended target, regardless of whether or not there is selective publication, and even under ‘ideal’

conditions with no researcher manipulation, replications with identical designs and comparable

samples (i.e. no heterogeneity in true effects), no measurement error, random sampling in

replication selection, and high-powered original studies. That the intended target is not in fact

attainable in expectation underscores fundamental difficulties in interpreting replication rate

gaps observed in large-scale replication studies.

Figure 1 provides intuition for this result. It plots the replication probability of a single

study in Definition 2 as a function of the original effect X, for a fixed true effect θ and assum-

ing that the common power rule is applied with an intended power target of 1 ´ β “ 0.9.

Denote this conditional replication probability function as RP
`

X, σrpX, βq
ˇ

ˇθq. It is clear

that RP
`

X, σrpX, βq
ˇ

ˇθq is non-linear in X, which implies that EX|Θ

“

RP
`

X, σrpX, βq|θ
˘‰

‰

RP
`

EX|ΘrX|θs, σrpEX|ΘrX|θs, βq|θ
˘

, even if X is unbiased. If RP p¨|θq were globally concave,

Proposition 1 would immediately follow from Jensen’s inequality. However, it is only locally

concave around the true effect θ. The proof of Proposition 1 shows that when 1 ´ β ą 0.8314,

local concavity is sufficient to arrive at the same result for any distribution of latent studies.

The difference between the expected replication rate and its intended target is larger when

power in original studies is low. This is because the concavity of RP p¨|θq is more pronounced

when power in original studies is low. As an illustration, Figure 2 plots the relationship between

the expected replication rate and power in original studies, again assuming the intended power

target in replications is set to 90%, close to mean reported intended replication power in Open

6Replication power calculations themselves are typically designed with this definition in mind. Complemen-
tary replication measures include: the relative effect size; whether the 95% confidence interval of the replication
covers the original estimate; replication based on meta-analytic estimates; the 95% prediction interval approach
(Patil et al., 2016); the ‘small telescopes’ approach (Simonsohn, 2015); and the one-sided default Bayes factor
(Wagenmakers et al., 2016).



9

Figure 1. Replication Probability Function Conditional on Θ

Notes: Replication probability function in Definition 2 conditional on a fixed θ. The replication standard error
is calculated using the common power rule in Definition 1 to detect original effect sizes with 90% power (i.e.
σrpX,βq “ |X|{3.242).

Science Collaboration (2015) and Camerer et al. (2016). To highlight the impact of power in

original studies, the relationship is derived assuming no p-hacking, no selective publication,

and no heterogeneity (i.e. assuming exact replications). The plot shows that the expected

replication rate is bounded above by its intended target of 90%, in line with Proposition 1, and

is especially low when power in original studies is low. For instance, the expected probability of

replicating an original study with 33% power is around 50%. With relatively low estimates of

power across various empirical literatures, this provides strong theoretical grounds for expecting

low replication rates in practice, even in the absence of issues with p-hacking or treatment effect

heterogeneity. For intuition, note that if the true effect is zero, the replication probability is

0.025 (regardless of the how the replication standard error is chosen). Continuity implies that

when original studies have true effects close to zero (and therefore power in original studies is

low), replication probabilities will also be very low.

Two other factors affect the replication rate, although empirically their impact turns out to

be relatively small. First, as can be seen in Figure 1, when original estimates are significant but

with the ‘wrong’ sign, the probability of replication is very low (below 0.025) because it requires

the highly unlikely event that the replication estimate also has the wrong sign and is statistically

significant. Second, the replication rate induces upward bias in original estimates because it is,

by definition, calculated on a selected sample of significant findings. Replication estimates will
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Figure 2. Original Power and the Expected Replication Rate Under the Common Power Rule

Notes: Power of original studies and the expected replication rate under the common power rule are both
functions of ω “ θ{σ (normalized to be positive). Power in original studies to obtain a significant effect with the
same sign as the true effect is equal to 1´Φp1.96´ωq. The expected replication rate is calculated by taking 106

draws of Z from Npω, 1q and then calculating 10´6
ř106

i“1

“

1 ´ Φ
`

1.96 ´ signpziq
ω

σrpzi,βq

˘‰

, with intended power

equal to 1 ´ β “ 0.9 and depicted by the horizontal dashed line. The replication standard error is calculated
using the (normalized) common power rule in Definition 1 to detect original effect sizes with 90% power, which
is given by σrpzi, βq “ |zi|{3.242. This figure assumes no p-hacking, no heterogeneity in true effects, no selective
publication and random replication selection. Further details are provided in Section 2.

regress to the mean (Galton, 1886; Hotelling, 1933; Barnett et al., 2004; Kahneman, 2011)7,

although the ultimate impact on the replication rate is ambiguous because conditioning on

significance also tends to select larger true effects, which have higher replication probabilities.

Appendix C derives and estimates a decomposition of the replication rate gap in economics

and psychology, using the empirical methodology described in the next section, and finds that

it is almost entirely explained by the concavity of RP p¨q.

Proposition 1 applies to replications implementing the common power rule. Some more

recent replication studies have used a higher-power variant which I refer to as the fractional

power rule, wherein replication power is set to detect some fraction ψ of the estimated effect

size (Camerer et al., 2018, 2022). In Proposition B2 in Appendix B, I show that the expected

replication rate under the fractional power rule can be either above or below the stated power

target 1´β. More specifically, the expected replication rate can range anywhere between 0.025

and Φr1.96´ 1
ψ

`

1.96´Φ´1pβq
˘

s ą 1´ β depending on the statistical power of original studies.

For instance, if ψ “ 3
4
and 1 ´ β “ 0.9, as in the first-stage in Camerer et al. (2018), then the

7For a formal statement and proof, see Proposition B1 in Appendix B.
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expected replication rate could range anywhere between 0.025 and 0.99. These results build on

those in Andrews and Kasy (2019), who argue that replication rates may vary widely depending

on the latent distribution of studies. Finally, note that as with Proposition 1, these conclusions

hold whether or not there is selective publication, and even in the absence of p-hacking or

treatment effect heterogeneity.

Finally, a common perception is that selective publication favouring significant results – ei-

ther by authors or journals – produces more ‘false-positives’ in the published literature, which

are in turn harder to replicate. This theory is important to address because it enjoys substantial

support: over 90% of researchers cite ‘selective reporting’ as a contributing factor to irrepro-

ducibility, more than any other factor (Baker, 2016). However, Andrews and Kasy (2019) and

Kasy (2021) show that the replication rate in fact tells us very little about selective publica-

tion. Both provide examples showing that the replication rate can take on almost any value

depending on the latent distribution of true effects, irrespective of how selective publication is.

In fact, the replication rate in the Andrews and Kasy (2019) model is completely insensitive to

selective publication against null results.8 This follows from the simple fact that the replication

rate definition does not include statistically insignificant results. Thus, even if insignificant

results were being widely published, they would not be included in the replication rate.9,10

3. Empirical Applications

In this section, I test the null hypothesis that observed replication rates can be entirely explained

by issues with common power calculations emphasized in Proposition 1, rather than other issues

such as p-hacking or heterogeneity. To test this hypothesis, the theory requires that we estimate

the latent distribution of studies. This can then be used to generate replication rate predictions

which can be compared to observed replication rates. The procedure is as follows:

1. Estimate the latent distribution of studies, µΘ,Σ using an augmented version of the An-

drews and Kasy (2019) model applied to three large-scale replications.11 Estimation does

8For a formal statement, see Proposition B3 in Appendix B, which proves this more generally for measures

gp¨q that condition on statistical significance. Setting gpx, σ, xr, βq “ 1

”

|xr|

σrpx,σ,βq
ě 1.96, signpxrq “ signpxq

ı

gives the result for the replication rate measure.
9A caveat is that the model assumes a fixed distribution of latent studies, whereas in practice it may be

endogenous, for example, if researchers engage in more specification searching when publication bias against
null results is high (Simonsohn et al., 2014; Brodeur et al., 2016, 2020, 2022).

10Appendix D examines measures of replication which may be more sensitive to changes in selective publi-
cation than the replication rate. For evaluating efforts to reduce selective publication, simulation results show
that the prediction interval approach (Patil et al., 2016), when calculated over both significant and insignifi-
cant results, may provide a useful alternative to the replication rate, the confidence interval measure, and the
meta-analysis approach.

11Note that estimating the latent distribution of studies requires modelling selective publication, as discussed
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not use any data from replications.

2. Use the estimated model to simulate replications and predict what fraction of significant

results would replicate, absent any other issues such as p-hacking or heterogeneity.

3. Compare these predictions (which do not use any data from the replications) to actual

replication outcomes.

3.1. Replication Studies

I examine three replication studies. Camerer et al. (2016) replicate results from all 18 between

subjects laboratory experiments published in American Economic Review and Quarterly Jour-

nal of Economics between 2011 and 2014. Open Science Collaboration (2015) replicate results

from 100 psychology studies in 2008 from Psychological Science, Journal of Personality and So-

cial Psychology, and Journal of Experimental Psychology: Learning, Memory, and Cognition.

Following Andrews and Kasy (2019), I consider a subsample of 73 studies with test statistics

that are well-approximated by z-statistics. Camerer et al. (2018) replicate 21 experimental

studies in the social sciences published between 2010 and 2015 in Science and Nature.

In Camerer et al. (2016), replicators used the common power rule to detect original effects

with at least 90% power. In Open Science Collaboration (2015), replication teams were in-

structed to achieve at least 80% power using the common power rule, and encouraged to obtain

higher power if feasible. Reported mean intended power was 92% in both cases. Camerer et al.

(2018) implemented a higher-powered fractional power rule consisting of two stages. In the

first stage, replicators aimed to detect 75% of the original effect with 90% power. In the second

stage, further data collection was undertaken for insignificant results from the first stage, such

that the pooled sample from both stages was calibrated to detect half of the original effect size

with 90% power. I predict replication outcomes in the first stage.12

Note that the theoretical result in Proposition 1 showing that the expected replication rate

is bounded above by its intended target applies to the common power rule and not to the

fractional power rule. For the fractional power rule, the expected replication rate can either

above or below the stated power target. In both cases, the magnitude of the gap is an empirical

question.

in the model in Section I.A. However, with estimates of the latent distribution in hand, replication rate predic-
tions in step 2 will not depend on the degree to which null results are suppressed, since the replication rate is
defined only over significant results.

12Predicting second-stage outcomes is complicated by the fact that one study that was ‘successfully’ replicated
in the first stage was erroneously included in the second stage.
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3.2. Estimation

To calculate the expected replication rate, it is necessary to estimate the latent distribution

of studies µΘ,Σ. To do this, I estimate an augmented version of the empirical model in An-

drews and Kasy (2019). Specifically, Andrews and Kasy (2019) develop an empirical model

to estimate the marginal distribution of true effects Θ˚, but not of standard errors Σ˚. Since

predictions of the replication rate also require knowledge of the distribution of Σ˚, I augment

the model to estimate the joint distribution of pΘ˚,Σ˚q. Estimation is based on the ‘metastudy

approach’, which only uses data from original studies. Identification requires that true effects

are statistically independent of standard errors, a common assumption in meta-analyses. I

assume that Σ˚ follows a gamma distribution with shape and scale parameters denoted by κσ

and λσ, respectively.

Table 1 – Maximum Likelihood Estimates

Latent true effects Θ˚ Latent standard errors Σ˚ Selection parameters
κθ λθ κσ λσ βp1 βp2 βp3

Economics experiments

Augmented model 1.426 0.148 2.735 0.103 0.000 0.039 –
(1.282) (0.072) (0.536) (0.031) (0.000) (0.05) –

Andrews and Kasy (2019) 1.343 0.157 – – 0.000 0.038 –
(1.285) (0.075) – – (0.000) (0.05) –

Psychology experiments

Augmented model 0.782 0.179 4.698 0.044 0.012 0.303 –
(0.423) (0.055) (0.605) (0.008) (0.007) (0.134) –

Andrews and Kasy (2019) 0.734 0.185 – – 0.012 0.300 –
(0.405) (0.056) – – (0.007) (0.134) –

Social science experiments

Augmented model 0.077 0.644 6.249 0.028 0.000 0.000 0.611
(0.106) (0.333) (1.762) (0.009) (0.000) (0.000) (0.427)
(0.091) (0.326) (1.754) (0.009) (0.000) (0.000) (0.419)

Andrews and Kasy (2019) 0.070 0.663 – – 0.000 0.000 0.583
(0.091) (0.327) – – (0.000) (0.000) (0.418)

Notes: Maximum likelihood estimates for economics (Camerer et al., 2016), psychology (Open Science Collab-
oration, 2015) and social sciences (Camerer et al., 2018). Robust standard errors are in parentheses. Latent
true effects and standard errors are assumed to follow a gamma distribution; parameters (κ, λ) are the shape
and scale parameters, respectively. In economics and psychology, joint publication and replication probability
coefficients are measured relative to the omitted category of studies significant at 5 percent level. Parameters
βp1, βp2 in this case are the relative publication probabilities of studies that are insignificant at the 10% level;
and significant at the 10% level but not at the 5% level. For example, in experimental economics, an estimate
of βp2 “ 0.039 implies that results which are significant at the 5% level are about 26 times more likely to be
published and chosen for replication than results that are significant at the 5% level. Note that in economics,
results which were insignificant at thew 10% level were not selected for replication and hence βp1 “ 0. In social
sciences, the omitted category is studies significant at the 1% level. Results below the 5% significance level were
not chosen for replication so that βp1 “ βp2 “ 0, and βp3 measures the publication probability of a result that
is significant at the 5% level but not at the 1% level, relative to that of a a significant result at the 1% level.
Andrews and Kasy (2019) estimates are reproduced from accessible data and code from their analysis.
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For all other aspects of the model, I implement identical model specifications as Andrews

and Kasy (2019), whose focus is on estimating publication bias. Matching their specifications,

I assume that |Θ˚| follows a gamma distribution with shape and scale parameters pκθ, λθq; and

that the joint probability of being published and chosen for replication, ppX{Σq ˆ rpX{Σq,

is a step-function parameterized by βp. The inclusion of steps at common significance levels

p1.64, 1.96, 2.58q varies slightly across applications owing to different approaches for choosing

which studies to replicate.13 Table 1 presents the maximum likelihood estimates together

with reproduced estimates from Andrews and Kasy (2019) for comparison.14 For common

parameters, estimates are very close.

3.3. The Predicted Replication Rate

Model parameters estimates in Table 1 can be used to generate replication rate predictions by

simulating replications using the following procedure:

1. Draw 106 latent (published or unpublished) research questions and standard errors

pθ˚sim, σ˚simq from the estimated joint distribution µ̂Θ,Σpκ̂θ, λ̂θ, κ̂σ, λ̂σq.

2. Draw estimated effects x˚sim|θ˚sim, σ˚sim „ Npθ˚sim, σ˚sim2q for each latent study.

3. Use the estimated selection parameters β̂p to determine the subset of studies that are

published and chosen for replication.

4. For studies chosen for replication, calculate the replication standard error σsimr according

to the following rule

σsimr pxsim, β, ψq “
ψ ¨ |xsim|

1.96 ´ Φ´1pβq
(7)

where ψ “ 1 and 1 ´ β “ 0.92 in economics and psychology, which corresponds to the

common power rule; and ψ “ 3
4
and 1 ´ β “ 0.9 in social science experiments, which

corresponds to a fractional power rule.15

13Details on mechanisms for replication selection are outlined in Appendix E. With Z “ X{Σ, the selection
functions in each application are: rpX{Σq ˆ ppX{Σq91

`

1.64 ď |Z| ă 1.96qβp2 ` 1
`

|Z| ě 1.96q in economics;

rpX{Σq ˆ ppX{Σq91
`

|Z| ă 1.64qβp1 ` 1
`

1.64 ď |Z| ă 1.96qβp2 ` 1
`

|Z| ě 1.96q in psychology; and rpX{Σq ˆ

ppX{Σq91
`

1.96 ď |Z| ă 2.58qβp3 ` 1
`

|Z| ě 2.58q for social science experiments. Separate identification of the
publication probability function, ppq, requires that we specify the replication selection function rpq.

14Estimates for psychology in this article are slightly different to the meta-study estimates reported in
Andrews and Kasy (2019) (their Table 2). The difference is due to a misreported p-value in the raw psychology
data for one study, which leads to an erroneous outlier in the distribution of original study standard errors.
Table 1 in this article reproduces estimates of their model with the corrected data. Excluding this study in the
augmented model leads to very similar replication rate predictions.

15This assumes all simulated replications set intended power equal to the mean of reported intended power.
In practice, there was some variation in the application of the power rule around the mean. Appendix F reports
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5. Simulate replications by drawing replication effect sizes xsimr |θsim, σsimr „ Npθsim, σsim2
r q

Let txi, σi, xr,i, σr,iu
Msig

i“1 be the (simulated) set of published, replicated original studies that

are significant at the 5% level, and their corresponding replication results.16 Msig is the number

of replicated originally-significant studies. The predicted replication rate is equal to

1

Msig

Msig
ÿ

i“1

1

´

|xr,i| ě 1.96σr,i, signpxr,iq “ signpxiq
¯

(8)

3.4. Results

In experimental economics, the predicted replication rate is 60%, which is very close to the

observed rate of 61.1% (Table 2). This is an “out-of-sample” prediction in the sense that the

model is estimated only using information from the original studies, and does not incorporate

any information from the replications. The accuracy of this prediction is consistent with the

null hypothesis that the observed replication rate in economics can be explained entirely by a

parsimonious model accounting only for issues with power calculations, and not other issues

such as p-hacking or treatment effect heterogeneity. Failure to reject the null hypothesis does

not, of course, imply that it is true, and thus we should not necessarily conclude that these

other factors are not present. Nonetheless, other evidence points to a relatively limited role

for p-hacking in the context of lab experiments studied here, perhaps due to fewer researcher

degrees of freedom as compared with observational settings (Brodeur et al., 2016, 2020; Imai

et al., 2020). Note that despite the very accurate point estimate, standard errors are relatively

large, which implies limited power to reject the model’s prediction (perhaps owing to the fact

that there are only 18 replicated studies).

In psychology, the model predicts a replication rate of 54.5%. This is well below mean

intended power of 92%, but higher than the observed replication rate of 34.8%. In this case,

the model accounts for around two-thirds of the replication rate gap, and we can reject the

null hypothesis that the replication gap is entirely explained by issues with common power

calculations. The unexplained portion of the gap in psychology provides evidence that other

factors discussed in the literature and not incorporated in the model may be important, includ-

ing heterogeneity in true effects, p-hacking, and measurement error. Another possibility is that

predicted replication rates allowing for variation in intended power across studies that matches the empirical
variation in each application. Results are very similar and in fact slightly more accurate in all three applications
(61.5% in economics; 52.2% in psychology; and 55.5% in social science).

16In both experimental economics and psychology, a small number of original results whose p-values were
slightly above 0.05 were treated as ‘positive’ results and included in the replication rate calculation. To match
this, I set the cutoff for significant findings for the purposes of replication equal to the smallest z-statistic that
was treated as a ‘positive’ result for replication. Predictions are almost identical with a strict 0.05 significance
threshold.
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the model should account for differences in replicating main effects and interaction effects, and

differences across subfields (Open Science Collaboration, 2015; Altmejd et al., 2019).

A popular variant for the common power rule is the fractional power rule, where replication

power is set to detect some fraction of the original effect size with a given level of statistical

power (e.g. Camerer et al. (2018) and Camerer et al. (2022)). Theoretically, under the specific

rule applied in Camerer et al. (2018), the expected replication rate can range anywhere between

0.025 and 0.99 depending on the power in original studies.17 Empirically, the predicted repli-

cation rate for the experimental social sciences is 54.3%, which is very close to the observed

rate of 57.1%. The difference is statistically indistinguishable from zero, although the standard

error of the prediction is quite large. Similarly to experimental economics, the accuracy of

the point estimate of the prediction implies that we cannot reject the null hypothesis that the

observed replication rate can be explained by a parsimonious model accounting only for issues

with power calculations.

Economics experiments Psychology Social sciences
Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
Predicted replication rate 0.600 0.545 0.543

(0.122) (0.054) (0.134)

Table 2 – Replication Rate Predictions

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social sciences to Camerer et al. (2018). The replication rate is defined as the share of
original estimate whose replications have statistically significant findings of the same sign. Figures in the first
row report the mean intended power reported in both applications. The second row shows observed replication
rates. The third row reports the predicted replication rate in equation (8) calculated using parameter estimates
Table 1. The fourth row shows standard errors for the predicted replication rate which are calculated using the
delta method. In social sciences, power is set to detect three-quarters of the original effect size with 90% power.
This approach does not have a fixed nominal target for the replication rate.

3.4.1. Extensions

I examine three extensions. In Appendix G, I use the empirical models estimated in Table 1

to generate predicted average relative effect sizes, using a similar procedure to the replication

rate predictions. I find that the predicted relative effect size is quite similar to the observed

value in economics (0.70 vs. 0.66). In the social sciences, the model is somewhat farther off

(0.53 vs. 0.44), which may suggest a role for other factors, although the difference is not

statistically distinguishable from zero. Finally, in psychology, the prediction is quite far off

17Proposition B2 shows that the expected replication rate can range between 0.025 and 1´Φr1.96´ 1
ψ

`

1.96´

Φ´1pβq
˘

s. With the fraction of original effect size to detect equal to ψ “ 3{4, and intended power set to
1 ´ β “ 0.9, the upper range equals 0.99.
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(0.64 vs. 0.37), again providing strong evidence for alternative factors. Note that relative effect

sizes are affected both by selection of significant results for replication and the level of statistical

power in original studies.18

A second extension considers the proposed rule of setting replication power equal to original

power in Appendix F. In a review of 108 psychology replications by Anderson and Maxwell

(2017), 19 (17.6%) implemented this approach. In all three applications, this approach leads

to lower predicted replication rates than under the common power rule.

Given the issues that stem from conditioning on statistical significance, the third extension

in Appendix H examines the suggestion of extending the replication rate definition to include

null results that are ‘replicated’ if their replications are also insignificant. For empirical models

in economics and psychology, this ‘extended’ replication rate remains below intended power

under the common power rule.

4. Conclusion

The prominence of the replication rate stems in part from its apparent transparency and ease of

interpretation. However, caution should be applied when interpreting the replication rate from

large-scale replication studies using the common power rule for setting replication power. In

general, intended replication targets are not attainable in expectation. Moreover, the replication

rate gap will be particularly large when original power is low. Empirical evidence supports the

importance of these theoretical insights. In a parsimonious model with neither heterogeneity

nor p-hacking, predicted replication rates in experimental economics and social science are very

close to observed values. This is consistent with the null hypothesis that problems with power

calculations alone are sufficient to explain observed replication rates in these fields.
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Brodeur, A., M. Lé, M. Sangnier, and Y. Zylberberg (2016). Star Wars: The Empirics Strike Back.

American Economic Journal: Applied Economics 8 (1), 1–32.

Bryan, C. J., D. S. Yeager, and J. M. O’Brien (2019). Replicator Degrees of Freedom Allow Publication

of Misleading Failures to Replicate. Proceedings of the National Academy of Sciences of the United

States of America 116 (51), 25535–25545.

Button, K. S., J. P. Ioannidis, C. Mokrysz, et al. (2013). Power Failure: Why Small Sample Size

Undermines the Reliability of Neuroscience. Nature Reviews Neuroscience 14 (5), 365–376.

Camerer, C., Y. Chen, A. Dreber, et al. (2022). Mechanical Turk Replication Project.

Camerer, C. F., A. Dreber, E. Forsell, et al. (2016). Evaluating Replicability of Laboratory Experi-

ments in Economics. Science 351 (6280), 1433–1437.

Camerer, C. F., A. Dreber, F. Holzmeister, et al. (2018). Evaluating the replicability of social science

experiments in Nature and Science between 2010 and 2015. Nature Human Behaviour 2 (9), 637–644.

Cesario, J. (2014). Priming, Replication, and the Hardest Science. Perspectives on Psychological

Science 9 (1), 40–48.

DellaVigna, S. and E. Linos (2022). RCTs to Scale: Comprehensive Evidence From Two Nudge Units.

Econometrica 90 (1), 81–116.



19

DellaVigna, S., N. Otis, and E. Vivalt (2020). Forecasting the Results of Experiments: Piloting an

Elicitation Strategy. AEA Papers and Proceedings 110, 75–79.

Dreber, A., T. Pfeiffer, J. Almenberg, et al. (2015). Using Prediction Markets to Estimate the Re-

producibility of Scientific Research. Proceedings of the National Academy of Sciences of the United

States of America 112 (50), 15343–15347.
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Online Appendix

This appendix contain proofs and supplementary materials for “Can the Replication Rate Tell

Us About Selective Publication?” Section A derives properties of the replication probability

function. Section B contains proofs for results in the main text, in addition to other theoretical

results. Section C presents an illustrative example of how the replication rate can vary with

changes in selective publication above the 1.96 significance threshold. Section D details replica-

tion selection mechanisms implemented in the three applications. Section E presents extensions

of the empirical results using alternative power calculations. Section F builds intuition for the

empirical replication rate decomposition results. Section G examine two further extensions to

the empirical results: examining the impact of p-hacking on the replication rate; and an anal-

ysis of the relative effect size measure of replication. Appendix H examines a generalization of

the replication rate definition to include insignificant results.

A. Properties of the Replication Probability Function

This Appendix derives properties of the replication probability function (Definition 1). The first

‘property’ simply provides a convenient, compact notation. The remaining properties consider

the replication probability function under the common power rule to detect original effect sizes

with 1 ´ β intended power (Definition 3). Recall that the replication probability for original

study px, σ, θq is equal to

RP
`

x, θ, σrpx, σ, βq
˘

“ P

˜

|Xr|

σrpx, βq
ě 1.96, signpXrq “ signpxq

¸

(9)

To provide intuition of the properties, Figure A1 provides an illustration of the replication

probability function for different values of x under the common power rule for 1 ´ β “ 0.9 and

a fixed value of θ.

Lemma A1 (Properties of the replication probability function). The replication probability

function satisfies the following properties:

1. For any replication standard error σrpx, σ, βq, the replication probability for an original

study px, σ, θq can be written compactly as

RP
`

x, θ, σrpx, σ, βq
˘

“ 1 ´ Φ

ˆ

1.96 ´ signpxq
θ

σrpx, σ, βq

˙

(10)

The remaining properties assume the replication standard error σrpx, βq is set using the
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common power rule in Definition 3 with intended power 1 ´ β:

2. If 1 ´ β ą 0.025, then RP
`

x, θ, σrpx, βq
˘

is strictly decreasing in x over p´8, 0q and

p0,8q.

3. If p1 ´ βq ą 0.6628, then RP
`

x, θ, σrpx, βq
˘

is strictly concave with respect to x over the

open interval pmax t0, r1 ´ r˚pβqsθu, r1 ` r˚pβqsθq, where

r˚
pβq “ ´

`

2 ` 1.96.hpβq
˘

`

d

`

2 ` 1.96.hpβq
˘2

´ 4 ˆ p1 ` 1.96.hpβq ´ hpβq2
˘

2
ą 0 (11)

with hpβq “
`

1.96 ´ Φ´1pβq
˘

.

4. The limits of the replication probability function with respect to x are

lim
xÑ8

RP
`

x, θ, σrpx, βq
˘

“ 0.025 and lim
xÑ´8

RP
`

x, θ, σrpx, βq
˘

“ 0.025 (12)

lim
xÒ0

RP
`

x, θ, σrpx, βq
˘

“ 0 and lim
xÓ0

RP
`

x, θ, σrpx, βq
˘

“ 1 (13)

5. Suppose X˚ „ Npθ, σ2q. Then E
“

RP
`

X, θ, σrpX, βq
˘‰

Ñ 1 ´ β as θ Ñ 8 for fixed σ.

Figure A1. Example of the replication probability function under the common power rule with intended power
p1 ´ βq “ 0.9. The two vertical lines around θ marks the open interval over which the replication probability
function is strictly concave, where r˚ is given by equation (11).
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Proof of 1.

The probability in equation (9) equals
“

1px{σ ě 1.96q ˆ
`

1 ´ Φ
`

1.96 ´ θ
σr

˘‰

`
“

1px{σ ď

´1.96q ˆ Φ
`

´ 1.96 ´ θ
σr

˘‰

. This captures the two requirements for ‘successful’ replication:

the replication estimate must attain statistical significance and have the same sign as the

original estimate. Equation (10) is obtained using the symmetry of the normal distribution,

which implies that Φptq “ 1 ´ Φp´tq for any t. ˝

Proof of 2.

The first derivative of the replication probability function with the common power rule is

BRP
`

x, θ, σrpx, βq
˘

Bx
“

$

&

%

´ θ
x2

`

1.96 ´ Φ´1pβq
˘

ˆ ϕ
´

1.96 ´ θ
x

`

1.96 ´ Φ´1pβq
˘

¯

, x ą 0

´ θ
x2

`

1.96 ´ Φ´1pβq
˘

ˆ ϕ
´

´ 1.96 ´ θ
|x|

`

1.96 ´ Φ´1pβq
˘

¯

, x ă 0

(14)

These are strictly negative whenever
`

1.96 ´ Φ´1pβq
˘

ą 0 ðñ p1 ´ βq ą 0.025. ˝

Proof of 3.

First, note that for x ą 0, the second derivative of the replication probability function with the

common power rule is

B2RP
`

x, θ, σrpx, βq
˘

Bx2
“

ˆ

hpβqθ

x3

˙

ϕ

ˆ

1.96 ´
hpβqθ

x

˙

«

1 `

ˆ

hpβqθ

x

˙ˆ

1.96 ´
hpβqθ

x

˙

ff

(15)

Let x “ p1 ` rqθ. Substituting this into the previous equation and simplifying shows that

equation (15) is strictly negative when the following inequality is satisfied

r2 `
`

2 ` 1.96hpβq
˘

.r `
`

1 ` 1.96hpβq ´ hpβq
2
˘

ă 0 (16)

The solution to the quadratic equation has a unique positive solution r˚pβq whenever p1 ´

βq ą 0.6628. To see this, note that there exists a unique positive solution when
`

1`1.96hpβq ´

hpβq2
˘

ă 0. This quadratic equation in hpβq must have a unique positive and negative solution

in turn, since the parabola opens downwards and equals 1 when hpβq “ 0. The positive root

can be obtained from the quadratic formula, which gives 2.38014. Since the quadratic function

opens downward, this implies that for any hpβq ą 2.38014, we have
`

1`1.96hpβq ´hpβq2
˘

ă 0.
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Thus, a unique positive solution to equation (16) exists whenever this condition is satisfied. In

particular, a unique positive solution exists whenever

hpβq “ 1.96 ´ Φ´1
pβq ą 2.38014

ðñ Φp1.96 ´ 2.38014q ą β

ðñ p1 ´ βq ą 0.6628 (17)

The unique positive solution for equation (16) can again be obtained by the quadratic

formula, which gives equation (11). Note that for any r ą 0 where the inequality for concavity

in equation (16) is satisfied, the same must also be true of ´r, since it makes the left-hand-

side strictly smaller. This implies that the replication probability function is strictly concave

(since its second derivative is strict negative) over pmax t0, r1 ´ r˚pβqsθu, r1 ` r˚pβqsθq, where

the maximum is taken because the replication probability function is discontinuous at 0. This

follows because of the properties of the quadratic function. Specifically, suppose fpxq is a

parabola that opens upward and intersects the y-axis at a negative value. Then for any two

points pa, bq with a ă b and fpaq, fpbq ă 0, it must be that fpcq ă 0 for any c P pa, bq. ˝

Proof of 4.

Substituting the common power rule into the replication probability function gives

RP
`

x, θ, σrpx, βq
˘

“ 1 ´ Φ

ˆ

1.96 ´
θ

x

`

1.96 ´ Φ´1
pβq

˘

˙

(18)

The values of the limits can be seen immediately from this expression. ˝

Proof of 5.

This proof consists of two steps. In the first step, I show that the replication probability

function approaches linearity in x in an even interval around θ, as θ Ñ 8 for fixed σ. To see

this, fix r P p0, 1q. Then the second derivative evaluated at any point cθ P
`

rθ, p1 ` rqθ
˘

equals

B2RP
`

x, θ, σrpx, βq
˘

Bx2

ˇ

ˇ

ˇ

ˇ

ˇ

x“cθ

“

ˆ

hpβq

c3θ2

˙

ϕ

ˆ

1.96 ´
hpβq

c

˙

«

1 `

ˆ

hpβq

c

˙ˆ

1.96 ´
hpβq

c

˙

ff

(19)

This approaches zero as θ Ñ 8, which implies that RP
`

x, θ, σrpx, βq
˘

approaches linearity

in x over the interval
`

rθ, p1 ` rqθ
˘

in the limit.
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For the second step, see that as θ Ñ 8 with fixed σ, we have that

P
“

X˚
P

`

rθ, p1 ` rqθ
˘

|θ, σ
‰

“ Φ

ˆ

p1 ` rqθ ´ θ

σ

˙

´ Φ

ˆ

rθ ´ θ

σ

˙

Ñ 1 (20)

That is, the probability of drawing X˚ inside of the range
`

rθ, p1 ` rqθ
˘

approaches one in

the limit. But from the first step we know that the replication probability function is linear

over this range as θ Ñ 8 with fixed σ. This implies in the limit that E
“

RP
`

X, θ, σrpX, βq
˘‰

“

RP
`

ErXs, θ, σrpX, βq
˘

“ RP
`

θ, θ, σrpX, βq
˘

“ 1 ´ β, as shown in Lemma 1 in the main text.

B. Proofs of Propositions

For convenience, some proofs use notation distinguishing the publication probability function

pp¨q over significant and insignificant regions:

ppX˚
{Σ˚

q “

$

&

%

psigpX
˚{Σ˚q if S˚

X “ 1

pinsigpX
˚{Σ˚q if S˚

X “ 0

where S˚
X is an indicator variable that equals one if

ˇ

ˇX˚{Σ˚
ˇ

ˇ ě 1.96 and zero otherwise.

Lemma B1 (Justification of the common power rule). Consider a published study px, σ, θq. If

x “ θ and a replication uses the common power rule to detect the original effect with intended

power 1 ´ β, then

RP
´

θ, θ, σrpθ, βq

¯

“ 1 ´ β (21)

Proof. Substitute the common power rule in the replication probability function derived in

Lemma A1.1 in Appendix A. If x “ θ, then

RP
`

θ, θ, σrpθ, βq
˘

“ 1´Φ

ˆ

1.96´ signpθq
θ

σrpθ, βq

˙

“ 1´Φ

ˆ

1.96´
θ

θ

`

1.96´Φ´1pβq
˘

˙

“ 1´β (22)

Proof of Proposition 1: For notational convenience, let pXsig,Σsig,Θsigq denote the distri-

bution of latent studies pX˚,Σ˚,Θ˚q conditional on being published pD “ 1q and statistically

significant p|X˚{Σ˚| ě 1.96q. The expected replication probability (Definition 2) under the

common power rule (Definition 3) can be written as

EX˚,Σ˚,Θ˚|D,R,S˚
X

”

RP
´

X˚,Θ˚, σrpX
˚, βq

¯
ˇ

ˇ

ˇ
D “ 1, R “ 1, |X˚

{Σ˚
| ě 1.96

ı
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“ EX,Σ,Θ|SX

”

RP
`

X,Θ, σrpX,Σ, βq
˘
ˇ

ˇ|X{Σ| ě 1.96
ı

“ EXsig ,Σsig ,Θsig

”

RP
´

Xsig,Θsig, σrpXsig, βq

¯ı

“ EΣsig ,Θsig

«

EXsig |Σsig ,Θsig

”

RP
´

Xsig,Θsig, σrpXsig, βq

¯

|Θsig “ θ,Σsig “ σ
ı

ff

(23)

where the second inequality drops the conditioning on being chosen for replication (R) because

it is assumed that replication selection on significant results is random; and the last equal-

ity uses the Law of Iterated Expectations. The proof shows that the conditional expected

replication probability satisfies EXsig |Σsig ,Θsig

“

RP
`

Xsig,Θsig, σrpXsig, βq
˘

|Θsig “ θ,Σsig “ σ
‰

ă

1 ´ β which implies that the expected replication probability is also less than intended

power 1 ´ β. For greater clarity in what follows, let E
“

RP
`

Xsig|θ, σ, βq
‰

be shorthand for

EXsig |Σsig ,Θsig

“

RP
`

Xsig,Θsig, σrpXsig, βq
˘

|Θsig “ θ,Σsig “ σ
‰

.
Note that the conditional expected replication probability can be written explicitly as

E
“

RP
`

Xsig|θ, σ, βq
‰

“

ż
ˆ

1´Φ

ˆ

1.96´ signpxq
θ

|x|

`

1.96´Φ´1pβq
˘

˙ p
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

1
`

| xσ | ě 1.96
˘

dx

ş

x1 p
`

x1

σ q 1
σϕ

´

x1´θ
σ

¯

1
`

| xσ | ě 1.96
˘

dx1
(24)

where the integrand in equation (24) is obtained using the compact notation for the replication

probability derived in Lemma A1.1 and then substituting the common power rule in Definition

3. This density differs from a normal density in two respects: (1) the publication probability

function p
`

x
σ

˘

reweights the distribution; and (2) conditioning on statistical significance trun-

cates original effects falling in the insignificant region p´1.96σ, 1.96σq. The denominator is the

normalization constant.

First, we introduce some notation. Lemma A1.3 shows that if p1 ´ βq ą 0.6628, then

RP
`

x, |θ, σ, β
˘

is strictly concave over the open interval pmax t0, r1 ´ r˚pβqsθu, r1 ` r˚pβqsθq,

where r˚pβq is given by equation (11). This Proposition assumes p1 ´ βq ą 0.8314, so the

condition is satisfied. To simplify the notation, define pl˚, u˚q “
`

p1 ´ r˚qθ, p1 ` r˚q
˘

when

r˚ P p0, 1q and pl˚, u˚q “
`

0, 2θ
˘

when r˚ ě 1; in both cases, the replication probability

function is strictly concave over an interval with mid-point θ.

Consider first the case where r˚ ě 1 so that pl˚, u˚q “
`

0, 2θ
˘

. The conditional replication

probability can be expressed as a weighted sum

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

“ P

´

Xsig ă l˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ă l˚

ı

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ą u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ą u˚

ı
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ă P

´

Xsig ă l˚
¯

0.025`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ą u˚
¯

`

1´β
˘

(25)

In the last line, the first term in the sum uses the fact that the maximum value of the

replication probability when x ă l˚ “ 0 is 0.025 (Lemma A1.2 and Lemma A1.4 in Appendix

A). The third term follows because RP
`

2θ|θ, σ, β
˘

is the maximum value the function takes

over x ą u˚ “ 2θ, since the function is strictly decreasing over x ą 0 (Lemma A1.2); and

therefore that RP
`

2θ|θ, σ, β
˘

ă RP
`

θ|θ, σ, β
˘

“ 1 ´ β, where the equality is shown in Lemma

1. From equation (25), we can see that E
“

RP pXsig|θ, σ, βq|l˚ ď Xsig ď u˚
‰

ă 1´β is a sufficient

condition for E
“

RP
`

Xsig|θ, σ, βq
‰

ă 1 ´ β.

Before showing that this sufficient condition is satisfied, we show that the same sufficient

condition holds in the second case, where r˚ P p0, 1q so that pl˚, u˚q “
`

p1´r˚qθ, p1`r˚qθ
˘

. This

requires additional steps. First, express the conditional replication probability as a weighted

sum

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

“ P

´

Xsig ď l˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ď l˚

ı

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ě u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
Xsig ě u˚

ı

ă P

´

Xsig ď l˚
¯

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ě u˚
¯

RP
´

u˚|θ, σ, β
¯

(26)

The strict inequality follows for two reasons. For the first term in the sum, one is the

maximum value the function can take for any x. For the third term, RP pu˚|θ, σ, βq is the

function’s maximum value over x ě u˚, since the integrand is strictly decreasing over positive

values (Lemma A1.2). With an additional step, we can write this inequality as

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

ă
1

2

´

1 ´P

´

l˚ ď Xsig ď u˚
¯¯´

1 ` RP
`

u˚
ˇ

ˇθ, σ, β
˘

¯

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

(27)

This follows because PpXsig ď l˚q ď PpXsig ě u˚q and RP pu˚|θ, σ, βq ă 1. That is, increas-

ing the relative weight on the maximum value of one, such that both tails are equally weighted,

must lead to a (weakly) larger value. The weak inequality PpXsig ď l˚q ď PpXsig ě u˚q

required for this simplification is shown below:

Lemma B2. Suppose X|θ, σ follows the truncated normal pdf in equation (24). Then for any

r˚ P p0, 1q, the following inequality holds: P
`

Xsig ď p1 ´ r˚qθ
˘

ă P
`

Xsig ě p1 ` r˚qθ
˘

.

Proof. First, note that
`

p1 ´ r˚qθ, p1 ` r˚qθ
˘

is an interval over the positive real line centered

at θ. Consider two cases:
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Case 1: Let p1 ´ r˚qθ ď 1.96σ. Define the normalization constant C “
ş

x1 p
`

x1

σ
q 1
σ
ϕ

´

x1´θ
σ

¯

1
`

|x
σ

| ě 1.96
˘

dx1. Then

P

´

Xsig ď p1 ´ r˚qθ
¯

“
1

C

ż ´1.96σ

´8

psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 ď
1

C

ż 8

2θ`1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

ă
1

C

ż 8

2θ`1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1`
1

C

ż 2θ`1.96σ

max t1.96σ,p1`r˚qθu

psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 “ P

´

Xsig ě p1`r˚qθ
¯

(28)

Consider the weak inequality. Note that the mid-point between ´1.96σ and 2θ`1.96σ is θ.

Thus, with no selective publication (i.e. pptq “ 1 for all t), we would have equality owing to the

symmetry of the normal distribution. However, recall that psigpq is symmetric about zero and

weakly increasing in absolute value. It follows therefore that |2θ ` 1.96σ| ą | ´ 1.96σ| implies

psigp|2θ ` 1.96σ|q ě psigp| ´ 1.96σ|q; using this fact and symmetry of the normal distribution

about θ gives the weak inequality. The strict inequality follows because the additional term is

strictly positive, since psigpq is assumed to be non-zero.

Case 2: Let p1 ´ r˚qθ ą 1.96σ. The argument is similar to the first case:

P

´

Xsig ď p1 ´ r˚qθ
¯

“
1

C

ż ´1.96σ

´8

psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 `
1

C

ż p1´r˚qθ

1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

ă
1

C

ż 8

2θ`1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 `
1

C

ż 2θ´1.96σ

p1`r˚qθ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

`
1

C

ż 2θ`1.96σ

2θ´1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 “ P

´

Xsig ě p1 ` r˚qθ
¯

(29)

The inequality in equation (27) can be further simplified by placing restrictions on intended

power. In particular, if intended power satisfies 1 ´ β ě 0.8314, then

E

”

`

RP
`

Xsig|θ, σ, β
˘

ı

ă

´

1 ´P
`

l˚ ď Xsig ď u˚
˘

¯

`

1 ´ β
˘

`P
`

l˚ ď Xsig ď u˚
˘

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

(30)

This follows because with u˚ “ p1 ` r˚qθ, we have
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1

2

´

1 ` RP
`

u˚
ˇ

ˇθ, σ, β
˘

¯

“
1

2

˜

1 `

˜

1 ´ Φ

˜

1.96 ´
1.96 ´ Φ´1pβq

1 ` r˚pβq

¸¸

ď 1 ´ β ðñ 1 ´ β ě 0.8314 (31)

From equation (30), we can see thatE
“

RP pXsig|θ, σ, βq
ˇ

ˇl˚ ď Xsig ď u˚
‰

ă 1´β is a sufficient

condition for E
“

RP pXsig|θ, σ, βq
‰

ă 1 ´ β. Thus, in both cases, the sufficient condition for the

desired result is the same.

This sufficient condition is shown in two steps. In the first, I show that this inequality

holds even in the case where there is no selective publication and all published results are

replicated (i.e. when X „ NpΘ,Σ2q). In the second, I show that this inequality remains true

once we allow for selective publication and truncation of the distribution due to conditioning

on statistical significance.

Lemma B3 states the first intermediate step. Its implications are of independent interest

and discussed in the main text. It shows that even in the optimistic scenario where original

estimates are unbiased, there is no selective publication, and all results are published and

replicated, that the expected replication probability still falls below intended power.

Lemma B3. Let published effects be distributed according to X|θ, σ „ Npθ, σ2q. Suppose

pptq “ 1 and rptq “ 1 for all t P R. Assume all results are included in the replication rate

calculation. Let power in replications is set according to the common power rule with intended

power 1 ´ β ě 0.8314. Then E
“

RP pX|θ, σ, β
˘‰

ă 1 ´ β.

Proof. Recall that RP px|θ, σ, βq is strictly concave with respect to x over the interval pl˚, u˚q,

where pl˚, u˚q “
`

p1 ´ r˚qθ, p1 ` r˚q
˘

when r˚ P p0, 1q and pl˚, u˚q “
`

0, 2θ
˘

; in both cases, the

mid-point of the interval is θ. We have that

E

”

RP
`

X|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď X ď u˚

ı

“

ż u˚

l˚

RP
`

x|θ, σ, β
˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

l˚
1
σϕ

´

x1´θ
σ

¯

dx1
ă RP

´

θ
ˇ

ˇ

ˇ
θ, σ, β

˘

¯

“ 1 ´ β

(32)

where the strict inequality follows from Jensen’s inequality and the fact that ErX|l˚ ď X ď

u˚s “ θ. The final equality is a property of the replication probability function shown in Lemma

1 in the main text. This is the sufficient condition required for the desired result.

Note that the inequalities in equations (27) (for when r˚ ě 1q and (30) (for when r˚ P p0, 1q)

were derived under more general conditions, where the normal distribution may we reweighted

by ppq and truncated based on significance. This setting is a special case with no selective
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publication (i.e. pptq “ 1 for all t), and no truncation such that all results are included in the

replication rate irrespective of statistical significance.

The same conclusions hold when we introduce selective publication (which reweights the

normal distribution) and condition on statistical significance (which truncates the ‘insignifi-

cant’ regions of the density). Consider three cases. First, suppose that u˚ ď 1.96σ. Then

E
`

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

˘

“ 0 ă 1 ´ β because of truncation. Second, suppose that

l˚ ě 1.96σ. Then

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

“

ż u˚

l˚

RP
`

x|θ, σ, β
˘

psig
`

x
σ

˘

1
σ
ϕ

´

x´θ
σ

¯

dx

şu˚

l˚
psig

`

x
σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

ď

ż u˚

l˚

RP
`

x|θ, σ, β
˘

1
σ
ϕ

´

x´θ
σ

¯

dx

şu˚

l˚
1
σ
ϕ

´

x1´θ
σ

¯

dx1

ă RP
´

θ
ˇ

ˇ

ˇ
θ, σ, β

˘

¯

“ 1 ´ β (33)

Note that the distribution is invariant to the scale of psigpq. Consider first the weak inequal-

ity. This follows because psigpq is assumed to be weakly increasing over pl˚, u˚q. When it is a

constant function over the interval, the equality holds. If psigpx{σq ą 0 for some x P pl˚, u˚q

then the function redistributes weight to larger values of x. Since RP px|θ, σ, βq is strictly de-

creasing over positive values of x (Lemma A1.2), placing higher relative weight on lower values

implies that the weak inequality becomes strict. As in the proof to Lemma B3, the strict

inequality follows from Jensen’s inequality, since RP px|θ, σ, βq is strictly concave over pl˚, u˚q,

and the fact that the expected value of X over this interval is equal to the true value θ. The

last equality follows from Lemma 1 in the main text.

Finally, consider the case where l˚ ă 1.96σ ă u˚. Then

E

”

RP
`

Xsig|θ, σ, β
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

“

ż u˚

1.96σ

RP
`

x|θ, σ, β
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, β
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1
`

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, β
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“ ω

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, β
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

ş2θ´1.96σ

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1
`p1´ωq

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, β
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

2θ´1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“ ω

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, β
˘

1
σϕ

´

x´θ
σ

¯

dx

ş2θ´1.96σ

1.96σ
1
σϕ

´

x1´θ
σ

¯

dx1
` p1 ´ ωq

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, β
˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

2θ´1.96σ
1
σϕ

´

x1´θ
σ

¯

dx1
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ă ωRP
´

θ
ˇ

ˇ

ˇ
θ, σ, β

˘

¯

` p1 ´ ωq.RP
´

2θ ´ 1.96σ
ˇ

ˇ

ˇ
θ, σ, β

˘

¯

ă 1 ´ β (34)

with

ω “

ş2θ´1.96σ

1.96σ
psig

`

x1

σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

şu˚

1.96σ
psig

`

x1

σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

(35)

The second row simply breaks up the integral. The third row rearranges the sum so that

the conditional expectation of the replication probability appears in both terms. The third line

follows because, as in the previous case, the psig function redistributes weight to large values

of x and hence lower values of RP px|θ, σ, βq. In the last line, the first term uses the concavity

of RP px|θ, σ, βq over p1.96σ, 2θ ´ 1.96σq Ă pl˚, u˚q, Jensen’s inequality, and the fact that the

expected value of X over this interval is equal to θ. The second term follows because 2θ´1.96σ

is the maximum value the function can take because RP px|θ, σ, βq is strictly decreasing in x

over positive values. The final inequality follows because RP
`

θ
ˇ

ˇθ, σ, β
˘˘

“ 1´β (Lemma 1) and

RP
`

2θ´ 1.96σ
ˇ

ˇθ, σ, β
˘˘

ă 1 ´ β because 2θ´ 1.96σ ą θ and the function is strictly decreasing

over positive values.

This covers all cases, proving the proposition.

Proposition B1 (Regression to the mean in replications). Suppose psigpq is symmetric about

zero, non-zero over all values, differentiable, and weakly increasing in absolute value. Allow

pinsigpq to take any form. Published original estimates X and corresponding replication esti-

mates Xr satisfy

E
“

X
ˇ

ˇΘ “ θ, SX “ 1
‰

ą θ “ E
“

Xr|Θ “ θ
‰

(36)

Proof. We have E
`

Xr

ˇ

ˇΘ “ θ
˘

“ θ by assumption. Next, note that

EX˚|Θ˚,S˚
X ,D

´

X˚
|Θ˚

“ θ, |X˚
{Σ˚

| ě 1.96, D “ 1
¯

“ EX|Θ,SX

´

X|Θ “ θ, |X{Σ| ě 1.96
¯

“ EΣ|Θ,SX

˜

EX|Θ,Σ,SX

´

X|Θ “ θ,Σ “ σ, |X{σ| ě 1.96
¯

¸

(37)

where the last line uses the Law of Iterated Expectations. We will prove EX|Θ,Σ,S˚
X

`

X|Θ “

θ,Σ “ σ, |X{σ| ě 1.96
˘

ą θ, which implies that the expression in equation (37) is also greater

than θ. Recall that X|θ, σ is the effect size of published studies and follows a truncated normal

distribution:
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p
`

x
σ

˘

1
σ
ϕ

`

x´θ
σ

˘

1
`

|x
σ

| ě 1.96
˘

ş

p
`

x1

σ

˘

1
σ
ϕ

`

x1´θ
σ

˘

1
`

|x
σ

| ě 1.96
˘

dx1
(38)

Define X “ θ ` σZ. Then the density for the transformed random variable Z is

p
`

z ` θ
σ

˘

ϕ
`

z
˘

1
`

|z ` θ
σ

| ě 1.96
˘

ş

p
`

z1 ` θ
σ

˘

ϕ
`

z1
˘

1
`

|z ` θ
σ

| ě 1.96
˘

dz1
(39)

For notational convenience, define the following normalization constants:

η̄ “ PpX ď ´1.96σq `PpX ě 1.96σq “ P

ˆ

Z ď ´1.96 ´
θ

σ

˙

`P

ˆ

Z ě 1.96 ´
θ

σ

˙

(40)

η1 “ PpX ď ´1.96σq “ P

ˆ

Z ď ´1.96 ´
θ

σ

˙

(41)

η2 “ PpX ě 2θ ` 1.96σq “ P

ˆ

Z ě
θ

σ
` 1.96

˙

(42)

η3 “ Pp1.96σ ď X ď 2θ ´ 1.96σq “ P

ˆ

1.96 ´
θ

σ
ď Z ď

θ

σ
´ 1.96

˙

(43)

Case 1.

Consider two cases. First, suppose θ P p0, 1.96σq. Conditional on pθ, σ) (where we suppress the

conditional notation on pθ, σq for clarity), the expected value of a published estimate conditional

of statistical significance is

EpX|1.96σ ď |X|q “
1

η̄

˜

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq

`
`

η̄ ´ η1 ´ η2
˘

EpX|1.96σ ď X ď 2θ ` 1.96σq

¸

(44)

First note that EpX|1.96σ ď X ď 2θ ` 1.96σq ą θ since we assume that θ P p0, 1.96σq and

psigpq ą 0. If η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq ě
`

η1 ` η2
˘

θ, it follows that

EpX|1.96σ ď |X|q ą θ, which is what we want to show. Consider the first expectation in this

expression:
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EpX|X ď ´1.96σq “ E

´

θ ` σZ|Z ď ´1.96 ´
θ

σ

¯

“ θ ` σE
´

Z|Z ď ´1.96 ´
θ

σ

¯

(45)

Evaluating the expectation in the right-hand-side of equation (45) gives

E

´

Z|Z ď ´1.96´
θ

σ

¯

“
1

η1

ż ´1.96´ θ
σ

´8

zpsig

ˆ

z `
θ

σ

˙

ϕpzqdz “ ´
1

η1

ż ´1.96´ θ
σ

´8

psig

ˆ

z `
θ

σ

˙

ϕ1
pzqdz

“ ´
1

η1

«

psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

´ psigp´8qϕp´8q ´

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz

ff

“ ´
1

η1
psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

`
1

η1

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz (46)

where the second equality uses ϕ1pzq “ ´zϕpzq; the third equality uses integration by parts;

and the final equality follows because psigp´8qϕp´8q “ 0 since psigpq is bounded between zero

and one. Substituting this into equation (45) gives

EpX|X ď ´1.96σq “ θ´
σ

η1
psigp´1.96qϕ

ˆ

´1.96´
θ

σ

˙

`
σ

η1

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z`
θ

σ

˙

ϕpzqdz (47)

Next, note that

EpX|X ě 2θ ` 1.96σq “ θ ` σE
´

Z|Z ď
θ

σ
` 1.96

¯

(48)

where

E

´

Z|Z ď
θ

σ
` 1.96

¯

“
1

η2

ż 8

1.96` θ
σ

zpsig

ˆ

z `
θ

σ

˙

ϕpzqdz ě
1

η2

ż 8

1.96` θ
σ

zpsig

ˆ

z ´
θ

σ

˙

ϕpzqdz (49)

since psigpz` θ{σq ě psigpz´ θ{σq for all z P p1.96` θ{σ,8q because psigptq is weakly increasing

over t ą 1.96. For the right-hand-side of this equation, we can apply similar arguments used

to derive equation (46). Substituting the result into equation (48) gives

EpX|X ě 2θ ` 1.96σq ě θ `
σ

η2
psigp1.96qϕ

ˆ

1.96 `
θ

σ

˙

`
σ

η2

ż 8

1.96` θ
σ

p1
sig

ˆ

z ´
θ

σ

˙

ϕpzqdz (50)
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Equations (47) and (50) imply

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq

ě pη1 ` η2qθ ` σ

«

psigp1.96qϕ

ˆ

1.96 `
θ

σ

˙

´ psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

ff

` σ

«

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz `

ż 8

1.96` θ
σ

p1
sig

ˆ

z ´
θ

σ

˙

ϕpzqdz

ff

“ pη1 ` η2qθ (51)

In the second line, the second term in the sum equals zero because symmetry of psigpq and

ϕpq about zero implies that both terms in the brackets are equal. To see why the third term in

the sum equals zero, note that

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz “

ż 8

1.96` θ
σ

p1
sig

ˆ

´ u `
θ

σ

˙

ϕpuqdu “ ´

ż 8

1.96` θ
σ

p1
sig

ˆ

u ´
θ

σ

˙

ϕpuqdu

(52)

The first equality follows from both changing the order of the integral limits and applying

the substitution u “ ´x; it also uses the symmetry of ϕpq. The final equality holds because

symmetry of psigpq about zero implies that for any t ą 1.96, p1
sigptq “ ´p1

sigp´tq.

Case 2.

Consider the second case where θ ě 1.96σ. For a given pθ, σq, we have

EpX|1.96σ ď |X|q “
1

η̄

˜

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq

η3EpX|1.96σ ď X ď 2θ ´ 1.96σq `
`

η̄ ´ η1 ´ η2 ´ η3
˘

EpX|2θ ´ 1.96σ ď X ď 2θ ` 1.96σq

¸

ą
1

η̄

˜

θpη1 ` η2q `
`

η̄ ´ η1 ´ η2 ´ η3
˘

θ ` η3EpX|1.96σ ď X ď 2θ ´ 1.96σq

¸

(53)

The inequality follows from two facts. First, the inequality proved in the first case:

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq ě pη1 ` η2qθ. Second, the expectation

in the third term of the sum satisfies EpX|2θ ´ 1.96σ ď X ď 2θ ` 1.96σq ą θ because

θ ě 1.96σ ðñ 2θ ´ 1.96σ ě θ and we assume that psigpq ą 0.

It remains to show that EpX|1.96σ ď X ď 2θ ´ 1.96σq ě θ. Then it follows that

EpX|1.96σ ď |X|q ą θ, which is what we want to show. First, note that



36

EpX|1.96σ ď X ď 2θ ´ 1.96σq “ θ ` σE

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96 ´
θ

σ
ď Z ď ´1.96 `

θ

σ

˙

(54)

It is therefore sufficient to show that E

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96 ´ θ
σ

ď Z ď ´1.96 ` θ
σ

˙

ě 0. Writing out

the expectation in full gives

E

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96´
θ

σ
ď Z ď ´1.96`

θ

σ

˙

“
1

η3

˜

ż 0

1.96´ θ
σ

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz`

ż θ
σ

´1.96

0

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz

¸

“
1

η3

˜

ż θ
σ

´1.96

0

z

„

psig

ˆ

z `
θ

σ

˙

´ psig

ˆ

´ z `
θ

σ

˙ȷ

ϕpzqdz

¸

ě 0 (55)

The second equality follows because

ż 0

1.96´ θ
σ

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz “ ´

ż 1.96´ θ
σ

0

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz “ ´

ż θ
σ

´1.96

0

upsig

ˆ

´u`
θ

σ

˙

ϕpuqdu

(56)

which uses the substitution u “ ´x and the symmetry of ϕpq. The weak inequality in equation

(55) follows because psigpq is assumed to be weakly increasing over positive values. Thus,

z ´ θ{σ ą ´z ` θ{σ for all z P p0, θ{σ ´ 1.96q implies psig
`

z ` θ{σ
˘

´ psig
`

´ z ` θσ
˘

ě 0.

This covers all cases and proves the proposition.

Proposition B2 Under the fractional power rule which sets the replication standard error

according to σrpX, β, ψq “
ψ¨|X|

1.96´Φ´1pβq
with ψ ă 1, the expected replication rate can range

between 0.025 and 1 ´ Φr1.96 ´ 1
ψ

`

1.96 ´ Φ´1pβq
˘

s ą 1 ´ β.

Proof of Proposition B2: Under the fractional power rule, the expected replication rate

conditional on fixed pθ, σq is given by

ErRP pX,Θ, σrpX, β, ψq|Θ “ θ,Σ “ σs

“

ż
«

1 ´ Φ
´

1.96 ´ signpxq
θ

ψ ¨ |x|

`

1.96 ´ Φ´1
pβq

˘

¯

ff

1

σ
ϕ

ˆ

x ´ θ

σ

˙

dx (57)

If θ “ 0, then this equals 0.025. Next, suppose that θ ą 0 and consider the case where

σ Ñ 0 such that power in original studies approaches one. See that the integrand is bounded

above by one and converges pointwise as σ Ñ 0 to
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1 ´ Φ
´

1.96 ´ signpxq
θ

ψ ¨ |x|

`

1.96 ´ Φ´1
pβq

˘

¯

1tx “ θu (58)

since the normal distribution converges to a degenerate distribution when the variance goes to

zero. Thus, by the dominated convergence theorem (and the fact that θ ą 0), we have that

lim
σÑ0

ErRP pX,Θ, σrpX, β, ψq|Θ “ θ,Σ “ σs “ 1 ´ Φ
´

1.96 ´
1

ψ

`

1.96 ´ Φ´1
pβq

˘

¯

(59)

When ψ “ 1, this equals 1 ´ β. Since equation (59) is strictly decreasing in ψ, it follows

that equation (59) is strictly above 1 ´ β when ψ ă 1.

This shows that the expected replication of an individual study can range between 0.025

and 1´Φr1.96´ 1
ψ

`

1.96´Φ´1pβq
˘

s ą 1´ β. Integrating over the distribution of latent studies

gives the desired result.

Proposition B3 For any function gpX,Σ, Xr, βq,E
“

gpX,Σ, Xr, βq|D “ 1, R “ 1, SX “ 1
‰

does

not depend on pinsigpq.

Proof of Proposition B3: We can write E
“

gpX,Σ, Xr, βq|D “ 1, R “ 1, SX “ 1
‰

as

ż

gpx, σ, xr, βqf
X˚,Σ˚,Θ˚,Xr |D,R,S˚

X

´

x, σ, θ, xr
ˇ

ˇD “ 1, R “ 1, SX˚ “ 1
¯

dxdσdθdxr

“

ż

x,σ,θ

˜

ż

xr

gpx, σ, xr, βqfXr |X˚,Σ˚,Θ˚

´

xr|θ, σrpx, σ, βq

¯

dxr

¸

f
X˚,Σ˚,Θ˚|D,R,S˚

X

`

x, σ, θ|D “ 1, R “ 1, S˚
X “ 1

˘

dxdσdθ

(60)

The equality uses the Law of Iterated Expectations and

fXr|X˚,Σ˚,Θ˚,D,R,S˚
X

`

xr|θ, σrpx, σ, βq
˘

“ fXr|X˚,Σ˚,Θ˚

`

xr|θ, σrpx, σ, βq
˘

. Replication esti-

mates are not subject to selective publication, which implies this is a normal density that

does not depend on ppq. Hence, the term in parentheses can only be affected by ppq indirectly

through fX˚,Σ˚,Θ˚|D,R,S˚
X
, which is the joint distribution of original studies conditional on being

published, chosen for replication, and statistically significant at the 5% level. However, this

distribution does not depend on the probability of publishing insignificant findings. To see

this, apply Bayes rule twice to get

fX˚,Σ˚,Θ˚|D,R,S˚
X

`

x, σ, θ|D “ 1, R “ 1, S˚
X “ 1

˘

“

P

´

D “ 1
ˇ

ˇX˚ “ x,Σ˚ “ σ,Θ˚ “ θ,R “ 1, S˚
X “ 1

¯

P

´

D “ 1
ˇ

ˇR “ 1, S˚
X “ 1

¯ ˆ

P

´

R “ 1
ˇ

ˇX˚ “ x,Σ˚ “ σ,Θ˚ “ θ, S˚
X “ 1

¯

P

´

R “ 1
ˇ

ˇS˚
X “ 1

¯
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ˆfX˚,Θ,Σ˚|S˚
X

´

x, θ, σ
ˇ

ˇS˚
X “ 1

¯

“
psigpx{σq

E
`

psigpX˚{Σ˚q
ˇ

ˇS˚
X “ 1

˘ ¨
rsigpx{σq

E
`

rsigpX˚{Σ˚q
ˇ

ˇS˚
X “ 1

˘ ¨ fX˚,Σ˚,Θ˚|S˚
X

´

θ, x, σ
ˇ

ˇS˚
X “ 1

¯

(61)

In the final line, the first factor in the product includes only psigpq; the denominator does not

condition on R because replication selection is assumed to be random for significant findings.

The second factor equals one because replication selection for significant results is assumed

to be random. The final factor in the product is the density of latent studies conditional on

significance, which is not affected by selective publication.

C. Replication Rate Gap Decomposition

How can we measure the relative importance of non-linearities as compared to distortions from

selection on significance? To answer this question, I derive a decomposition of the replication

rate gap, which I implement in the empirical section.

The decomposition is based on two regimes. Regime 1 (M1) assumes use of the standard

definition of the replication rate: only significant results are included, and replication selection

is a random sample of significant results. Regime 2 (M2) is based on a counterfactual scenario

where all results are published and replication is random. This implies the distribution of

published, replicated studies coincides with the distribution of latent studies. Formally, the

expectation operators under both regimes are defined by:

EM1

“

RP pX,Θ, σrpX,βqq
‰

“

ż

RP px, θ, σrpx, βqqfX˚,Θ˚|D,R,S˚
X

px, θ|D “ 1, R “ 1, S˚
X “ 1qdxdθ (62)

EM2

“

RP pX,Θ, σrpX,βqq
‰

“

ż

RP px, θ, σrpx, βqqfX˚,Θ˚ px, θqdxdθ (63)

Using these, we have the following decomposition:

p1 ´ βq ´EM1

“

RP pX,Θ, σrpX,βqq
‰

looooooooooooooooooooooomooooooooooooooooooooooon

replication rate gap

“ p1 ´ βq ´EM2

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

(i) concavity gap

`PM1

`

X ă 0
˘

´

EM1

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

´EM1

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ă 0
‰

¯

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

(ii) wrong-sign gap

`EM2

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

´EM1

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

(iii) selection-on-significance gap

(64)

Proof. Write the expected replication probability under model 1 as

EM1

“

RP pX,Θ, σrpX,βqq
‰

“ EM1

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰
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`PM1

`

X ă 0
¯

`

EM1

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ă 0
‰

¯

´EM1

“

RP pX,Θ, σrpX,βqq
ˇ

ˇX ě 0
‰

¯

(65)

To arrive at equation (64), substitute equation (65) into the replication rate gap; add and

subtract EM2

“

RP pX,Θ, σrpX, βqq
ˇ

ˇX ě 0
‰

; and rearrange the terms.

Note that the concavity gap and the selection-on-significance gap condition on estimates

with the same sign as the underlying true effect. This allows us to determine their contribution

separate from the impact of attempting to replicate original estimates with the ‘wrong’ sign.

Table C1 presents the results. Panel A reproduces the results in the main text, and Panel

B present the decomposition results. The empirical results for the decomposition show that

failing to account for the concavity of the replication power function explains the overwhelming

majority of the explained replication rate gap in both economics and psychology. The selection-

on-significance gap in small, explaining only 3.1% of the gap in economics, while actually de-

creasing the replication rate in psychology. The latter outcome arises because conditioning on

statistical significance tends to select larger true effects, which have higher replication proba-

bilities than smaller true effects.

Economics experiments Psychology Social sciences
A. Replication rate predictions
Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
Predicted replication rate 0.600 0.545 0.543

B. Decomposition of explained gap
Predicted replication rate gap 0.320 (100%) 0.375 (100%) –

Concavity gap 0.292 (91.16%) 0.364 (97.16%) –
Wrong-sign gap 0.018 (5.72%) 0.030 (8.03%) –
Selection-on-significance gap 0.010 (3.12%) -0.019 (-5.18%) –

Table C1 – Replication Rate Predictions and Decomposition Results

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social sciences to Camerer et al. (2018). The replication rate is defined as the share of
original estimate whose replications have statistically significant findings of the same sign. Figures in the first
row report the mean intended power reported in both applications. The second row shows observed replication
rates. The third row reports the predicted replication rate in equation (8) calculated using parameter estimates
Table 1. In social sciences, power is set to detect three-quarters of the original effect size with 90% power. This
approach does not have a fixed nominal target for the replication rate.

Below I provide details underlying the intuition behind the decomposition results.

Concavity gap.—Figure C1 presents normal simulations showing that the non-linearity gap

is largest for standardized true effects ω ” θ{σ which are close to 0, and remains above 0.2

for ω ď 1. It decreases monotonically as the true effect size ω increases and approaches zero



40

in the limit.19 It follows that the size of the non-linearity gap depends on the distribution of

ω. The first row of graphs in Figure F2 plot the distribution of latent studies that have the

‘correct’ sign (this corresponds to the expression for the ‘non-linearity’ gap in equation (??)).

We see that a high fraction of latent studies have ω ă 1, which explains why the non-linearity

gap explains such a large role.

Wrong-sign gap.—Random sampling variation means that original estimates will occasion-

ally have the ‘wrong’ sign. When this occurs, the replication probability is bounded above by

0.025. The extent to which this issue contributes to low replication rates therefore depends

on the share of studies that have the wrong sign among significant studies. This share will

be higher in settings with small true effects and low statistical power (Gelman and Carlin,

2014; Ioannidis et al., 2017). As power approaches 100%, the ‘wrong-sign gap’ approaches zero

because the probability of drawing an estimate with the ‘wrong’ sign shrinks to zero.

Table C2 presents figures based on the estimated models, which show that significant results

in experimental economics and psychology are relatively low-powered. The share of significant

studies with the ‘wrong’ sign is 3% in economics, and 5% in psychology owing to lower statistical

power. As a consequence, the wrong-sign gap is around 1 percentage point higher in psychology

compared to economics.

Table C2 – Power and Estimates With the Wrong Sign For Statistically Significant Studies

Experimental economics Experimental psychology

Mean normalized true effect 2.835 2.251
Mean power 0.550 0.486
Share with wrong sign 0.030 0.054
Wrong-sign gap 0.018 0.030

Notes: Figures are based on simulated draws from the estimated distribution of latent studies in Table 1 in the
main text. All statistics are calculated on the subset of statistically significant studies. The normalized true
effect is defined as θ{σ. Power is defined as the probability of obtaining a statistically significant effect at the
5% level. The wrong-sign gap is defined in (??).

Selection-on-significance gap.—The Selection-on-significance gap is 1% in economics and

slightly negative for psychology (i.e. conditioning on statistical significance increases the repli-

cation rate compared to when there is no conditioning). The sign of this gap is ambiguous

because of two opposing effects from conditioning on statistical significance. To see these two

effects, consider the figures in Table C2 which are based on the estimated empirical models.

For the first effect, note that conditioning on significant findings increases mean bias in both

19See Lemma A1.5 in Appendix A for a proof which shows that the non-linearity issue vanishes as true effect
sizes approach infinity.
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Figure C1. Replication Rate Gap Decomposition: Monte Carlo Simulations

Notes: Plots are based on simulating studies from an Npω, 1q distribution, for different values of ω. Replication
estimates are drawn from a Npω, σrpx, βq2q, where σrpx, βq is set based on the common power rule to detect
the original effect x with 1 ´ β “ 0.92 intended power. The non-linearity gap and regression-to-the-mean gap
are based on equation (??) and calculated using Monte Carlo methods.
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Figure C2. Distribution of Normalized True Effects: Latent Studies and Significant Studies

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). Densities are based on simulated draws from the estimated distribution of latent studies
in Table 1 in the main text. Dashed vertical lines show the median of the distribution.

applications.20 This makes replication more difficult for any fixed level of ω. For the second

effect, note that conditioning also tends to select studies with larger standardized true effects

ω, which have higher replication probabilities.21 Higher replication probabilities arise because

(i) bias is lower for larger true effects; and (ii) non-linearity effects are less severe for more

highly powered studies.

The bottom panel in Figure C1 present normal simulations which show that mean bias

decreases as the standard effect size increases, and approaches zero in the limit. The intuition

is that censoring insignificant original estimates has little ‘bite’ when the true effect is very

large, since the probability of drawing an insignificant estimate is very small. Thus, as true

effects become very large, the regression-to-the-mean gap approaches zero because the expected

replication probability of statistically significant findings with the ‘correct’ sign converges to

the expected replication probability of latent studies with the ‘correct’ sign.

20Bias is positive for latent studies because these statistics condition on original estimates X˚ to have the
same sign as true effects.

21The impact of conditioning on the full distribution of ω can be seen in Figure C2.
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Table C3 – True Effect Sizes and Bias For Studies with the ‘Correct’ Sign

Economics experiments Psychology experiments
Latent Published & significant Latent Published & significant

Mean bias 0.113 0.200 0.091 0.173
Mean standardized true effect 1.415 2.915 1.084 2.367

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). Figures are based on simulated draws from the estimated distribution of latent studies
from Table 1 in the main text. The mean of the standardized true effect is equal to ErΩ˚|S˚

X , X
˚ ą 0, Ds. Mean

Bias is equal to ErX˚ ´ Ω˚|S˚
X , X

˚ ą 0, Ds. ‘Latent studies’ allow S˚
X and D to be either 0 or 1. ‘Published

& significant studies’ set S˚
X “ 1 and D “ 1.

D. Alternative Measures of Selective Publication

Proposition 1 shows that the replication rate is unresponsive to the most salient form of selective

publication. For journals and policymakers seeking to change current norms, this highlights

the need for more informative measures. In this section, I conduct policy simulations using the

estimated model to show how three alternative measures respond to changes in the selective

publication of null results:

1. Replication CI: This measure counts a replication as ‘successful’ if its 95% confidence

interval covers the original estimate: 1
“

X P
`

Xr ´ 1.96Σr, Xr ` 1.96Σr

˘‰˘

.

2. Meta-analysis: The standard criterion of replication with the same sign and significance

is applied to a fixed-effect meta-analytic estimate combining the original and replication

estimate (uncorrected for selective publication): 1
“

|Xm| ě 1.96Σm, signpXmq “ signpXq
‰

where Xm and Σm are the meta-analytic estimate and standard error, respectively.22

3. Prediction interval: Original and replication estimates are counted as ‘consistent’ under

this approach if their difference is not statistically different from zero at the 5% level

(Patil et al., 2016). This is equivalent to estimating a 95% ‘prediction interval’ for the

original estimate and then determining if it covers the replication estimate: 1
“

Xr P
`

X ´ 1.96
a

Σ2 ` Σ2
r, X ` 1.96

a

Σ2 ` Σ2
r

˘‰˘

.23

These alternative replication measures are frequently reported in large-scale replication

studies (Open Science Collaboration, 2015; Camerer et al., 2016, 2018). In simulations, I

22The fixed-effects meta-analytic estimate is a weighted average of original and replication estimates: Xm “
`

ωoX`ωrXr

˘

{pωo`ωrq, where the weights are equal to the precision of each estimate i.e. pωo, ωrq “ pΣ´2,Σ´2q.
These weights minimize the mean-squared error of Xm (Laird and Mosteller, 1990). The variance of this
estimator is given by Σ2

m “ 1{pωo ` ωrq.
23This approach assumes that original and replication estimates share the same true effect and are statistically

independent. For more details, see the Supplementary Materials for Patil et al. (2016).
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calculate these measures over significant and insignificant published results, since conditioning

on statistical significance makes them unresponsive to selective publication on null results

(Proposition B2).

Simulations assume that all results significant at the 5% level are published, and that results

insignificant at the 5% level are published with probability βp. I then calculate how the various

measures change with βp to see how well they capture changes in selective publication (e.g.

because of policy changes that reduce selective publication). Policymakers’ successful efforts to

increase the probability of publishing null results lead to an increase in the policy variable, βp.

Note that while model estimation assumes multiple cutoffs, policy simulations are performed

assuming policymakers influence publication probabilities at a single cutoff (1.96) for simplicity

(i.e. in the policy simulations I set βp “ βp1 “ βp2 and βp3 “ 1 in social science).

Figure D1 shows the results. In line with Proposition 1, the replication rate is completely

unresponsive to changes in the probability of publishing null results, making it a poor measure

to evaluate efforts to reduce selective publication. Turning to alternative measures, note that

the replication CI and meta-analysis measures actually worsen when more null results are

published (βp Ñ 1). This is because less selective publication leads to more small effects

being selected for replication, which have relatively low replication probabilities under these

approaches. By contrast, the prediction interval measure is low when selective publication

is high, and approaches close to 95% as the probability of publishing null results approach

one.24 The prediction interval measure performs well because it explicitly accounts for the

decline in original power as more small effects are selected for replication. Noisy low-powered

original studies contain limited information about true effects, which implies that a large range

of replication estimates are statistically consistent with them.

Overall, for the purpose of evaluating efforts to reduce selective publication, these results

suggest that calculating the prediction interval measure over a random sample of all published

results could provide a useful alternative to the replication rate.

E. Replication Selection in Empirical Applications

Replication selection is a multi-step mechanism that first selects studies, and then selects results

within those studies to replicate (since studies typically report multiple results). It consists of

three steps:

1. Eligibility: define the set of eligible studies (e.g. journals, time-frame, study designs).

24When βp “ 1, the prediction interval measure is slightly higher than 95% in all applications. This is
because it assumes that the original estimate X and the replication estimate Xr are uncorrelated. In practice,
the replication standard error is a function of the original estimate via the common power rule, which generates
some correlation between X and Xr.
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Figure D1 – Policy Simulations: Alternative Measures of Replication and Selective Publica-
tion

Notes: Details of each measure are provided in the main text. All measures except for the replication rate
are calculated over significant and insignificant published results. Simulations use model estimates of the
latent distribution of studies from Table 1 and set different levels of selective publication βp. The first column
reproduces replication rate predictions in Table 2.

2. Study selection: on the set of eligible studies, a mechanism that select which studies

will be included in the replication study.

3. Within-study replication selection: for selected studies, a mechanism for selecting

which result(s) to replicate.

These three features of the replication selection mechanism influence the interpretation of
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the selection parameters pβp1, βp2, βp3q.

Economics experiments.—Consider these three steps in Camerer et al. (2016):

1. Eligibility: Between-study laboratory experiments in American Economic Review and

Quarterly Journal of Economics published between 2011 and 2014.

2. Study selection: Camerer et al. (2016) select for publication all eligible studies that

had ‘at least one significant between subject treatment effect that was referred to as

statistically significant in the paper.’ Andrews and Kasy (2019) review eligible studies

and conclude that no studies were excluded by this restriction. Thus, the complete set of

eligible studies was selected for replication.

3. Within-study replication selection: the most important statistically significant result

within a study, as emphasized by the authors, was chosen for replication. Further details

are in the supplementary materials in Camerer et al. (2016). Of the 18 replication studies,

16 were significant at the 5% level and two had p-values slightly above 0.05 but were

treated as ‘positive’ results for replication and included in the replication rate calculation.

I assume replication selection is random with respect to the t-ratio for results whose

p-values are below or only slightly above 0.05. This implies that βp2 measures the relative

probability of being published and chosen for replication for a result whose p-value is slightly

above 0.05, compared to if it were strictly below 0.05. Overall, the empirical results are

valid for the population of ‘most important’ significant (or ‘almost significant’) results, as

emphasized by authors, in experimental economics papers published in top economics journals

between 2011 and 2014.

Psychology.—Next, consider replication selection in Open Science Collaboration (2015):

1. Eligibility: Studies published in 2008 in one of the following journals: Psychological

Science, Journal of Personality and Social Psychology, and Journal of Experimental Psy-

chology: Learning, Memory, and Cognition.

2. Study selection: Open Science Collaboration (2015) write: ‘The first replication teams

could select from a pool of the first 20 articles from each journal, starting with the first

article published in the first 2008 issue. Project coordinators facilitated matching articles

with replication teams by interests and expertise until the remaining articles were difficult

to match. If there were still interested teams, then another 10 articles from one or more
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of the three journals were made available from the sampling frame.’ Importantly, the

most common reason why an article was not matched was due to feasibility constraints

(e.g. time, resources, instrumentation, dependence on historical events, or hard-to-access

samples).

3. Within-study replication selection: the last experiment reported in each article was

chosen for replication. Open Science Collaboration (2015) write that, ‘Deviations from

selecting the last experiment were made occasionally on the basis of feasibility or recom-

mendations of the original authors.’ A small number of results had p-values just above

0.05 but were treated as ‘positive’ results for replication, as in Camerer et al. (2016).

This selection mechanism implies that the empirical results are valid for the distribution of

last experiments in the set of eligible journals. Since neither studies nor results were selected

based on statistical significance, it is reasonable to treat the ‘last experiment’ rule as effectively

random. In this case, we can interpret the results are being valid for all results in the eligible

set of journals.

Social science experiments.—Finally, consider replication selection in Camerer et al. (2018):

1. Eligibility: Experimental studies in the social sciences published in Nature or Science

between 2010 and 2015.

2. Study selection: Camerer et al. (2018) include all studies that: ‘(1) test for an experi-

mental treatment effect between or within subjects, (2) test at least one clear hypothesis

with a statistically significant finding, and (3) were performed on students or other ac-

cessible subject pools. Twenty-one studies were identified to meet these criteria.’

3. Within-study replication selection: Camerer et al. (2018) write, ‘We used the fol-

lowing three criteria in descending order to determine which treatment effect to replicate

within each of these 21 papers: (a) select the first study reporting a significant treat-

ment effect for papers reporting more than one study, (b) from that study, select the

statistically significant result identified in the original study as the most important result

among all within- and between-subject treatment comparisons, and (c) if there was more

than one equally central result, randomly select one of them for replication.’ All results

selected for replication had p-values strictly below 0.05.

This selection mechanism implies that the empirical results are valid for the population

of statistically significant between- or within-subject treatment comparisons in experimental

social science, which were identified by authors as the most ‘important’ and published in
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Nature or Science between 2010 and 2015.

F. Predicted Replication Rates Under Alternative Power Calculations

This appendix presents several extensions to the main empirical results on predicting repli-

cation rates in experimental economics, psychology and social science. The first extension

allows for variation in the application of the common power rule around mean intended power.

Results are similar to those in the main text, which assume no variability in the application

of the common power rule. The second extension generates replication rate predictions under

the rule of setting replication power equal to original power. This delivers lower replication

rates than the common power rule.

Alternative power calculation rules.—Consider first the rule used for calculating replication

power in the main text, and then two additional approaches. For concreteness, suppose we

want to calculate the replication standard error for a simulated original study pxsim, σsim, θsimq.

1. Common power rule (mean): This is the rule reported in the results in the main

text. It assumes no variability in the application of the common power rule, such that all

replications have mean intended power 1 ´ β. This rule implies

σsimr pxsim, βq “
|xsim|

1.96 ´ Φ´1pβq
(66)

2. Common power rule (realized): Intended power for individual replications varied

around mean intended power for at least two reasons. First, replication teams were

instructed to meet minimum levels of statistical power, and encouraged to obtain higher

power if feasible. Second, a number of replication in Open Science Collaboration (2015)

did not meet this requirement. Figure F1 shows the distribution of realized intended

power in replications for experimental economics and psychology. Realized intended power

is right-skewed for psychology. In experimental economics and social science, realized

intended power is distributed more tightly around mean.

To capture variability in the application of the common power rule, take a random draw

from the empirical distribution of |x|{σr and denote it 1.96 ´ pβn. Then realized intended

power for simulated study pxsim, σsim, θsimq is equal to

σsimr pxsim, pβnq “
|xsim|

1.96 ´ Φ´1ppβnq
(67)
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3. Same power: Set replication power equal to the power in the original study:

σsimr pσsimq “ σsim (68)

This rule has been proposed as a straightforward, intuitive approach for designing repli-

cation studies. In a review of replication studies by Anderson and Maxwell (2017), 19 of

108 studies used this approach.

Figure F1. Histograms of realized intended power in replication studies in experimental economics, psychology,
and social science. Data are from Camerer et al. (2016), Open Science Collaboration (2015), and Camerer et al.
(2018), respectively. Realized intended power is defined as 1 ´ Φp1.96 ´ ψ ¨ x

σr
q with ψ “ 1 in economics and

psychology and ψ “ 3{4 in social science. The horizontal dashed line is reported mean power in each application.
In economics and psychology, this is 92% to detect the original effect size. In social science, this is 90% to detect
three quarters of the effect size.

.
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Results.—Table F1 presents the results for all three applications. Panel A shows that

allowing intended power to vary across replications (‘Realized power’) yields similar replication

rate prediction to assuming all replications have intended power equal to the report mean (‘92%

on X’). In fact, in all three applications, the accuracy improves very slightly under the realized

power rule. The biggest differences is in psychology, because the realized power rule accounts

for the fact that the distribution of intended power is right skewed.

Panel B examines the proposed rule of setting replication power equal to original power. In

all three cases, the expected replication rate is lower than under the common power rule.

Table F1 – Replication Rate Predictions Under Alternative Replication Power Rules

Economics Psychology Social science
A. Replication rate predictions

Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
Mean power 0.600 0.545 0.543
Realized power 0.615 0.522 0.555

B. Alternative rule
Same power 0.550 0.486 0.494

Notes: Economics experiments refer to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015), and social science experiments to Camerer et al. (2018). The replication rate is defined as
the share of original estimate whose replications have statistically significant findings of the same sign. Figures
in the first row are observed outcomes from large-scale replication studies. Remaining rows report predicted
replication rates using parameter estimates Table 1 in the main text and assuming different rules for calculating
replication power.

G. Relative Effect Size Predictions

The main focus of this article is the binary measure of replication based on the statistical

significance criterion. This is because of its status as the primary replication indicator in the

large-scale replication studies.25 However, complementary measures are frequently presented

alongside the replication rate. Perhaps the most common is the relative effect size, a continuous

measure of replication defined as the ratio of replication effect size and original effect size.

Relative effect sizes typically range between 0.35 and 0.7. Below, I include a brief theoretical

discussion of the relative effect size and then present predictions of this measure using the

estimated models.

Theoretical discussion.—The relative effect size for individual studies may be informative

about biases affecting original studies, especially when original studies are well-powered. How-

ever, as an aggregate measure of reproducibility, the relative effect size measure may be subject

25Power calculations in replications are themselves typically designed to measure a binary notation of repli-
cation ‘success’ or ‘failure’.
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to similar issues to the replication rate, at least in the case where it is defined exclusively over

significant findings.

First, if the relative effect size is defined over significant original results, then it will be

largely uninformative about the ‘file-drawer’ problem (Proposition B2).26 Second, non-random

sampling of significant results for replication mechanically induces inflationary bias in original

estimates and regression to the mean in replication estimates, such that relative effect sizes are

below one in expectation. Thus, similar to the replication rate, it has no natural benchmark

against which to judge deviations, making it challenging to interpret. Relatedly, the average

relative effect size is also very sensitive to power in original studies, which is unobserved. Figure

G1 provides an illustration with intended power set to 0.9, which shows that the expected

relative effect size for significant results is increasing in the power of original studies, and

approaches one only as statistical power approaches 100%.

Figure G1. Expected Relative Effect Size of Significant Original Studies and their Statisti-
cal Power

Notes: Illustration for the relationship between original power and the expected relative effect size of significant
findings under the common power rule are both functions of ω “ θ{σ (normalized to be positive). Original
power to obtain a significant effect with the same sign as the true effect is equal to 1´Φp1.96´ωq. The expected

relative effect size is calculated by taking 106 draws of Z from Npω, 1q and then calculating 1
Msig

řMsig

i“1 ρsigi,r {ρsigi ,

where ρ “ tanh z denotes the Pearson correlation coefficient obtained by transforming the Fisher-transformed
correlation coefficient (Fisher, 1915); and Msig is the number of significant latent studies. The superscript
sig reflects the fact that only statistically significant original results at the 5% level and their replications are
included in the calculation. Replication estimates zi,r are drawn from an Npω, σr,ipzi, βq2q distribution. The
replication standard error is calculated using the common power rule to detect original effect sizes with 90%
power (i.e. 1 ´ β “ 0.9), which is given by σrpzi, βq “ |zi|{r1.96 ´ Φ´1pβqs “ |zi|{3.242.

26Defining it over null results may present its own difficulties. For a perfectly measured null effect, the
denominator in the statistic is equal to zero and the statistic is not well defined. On the other hand, if it is
close but not equal to zero, then the statistic is highly sensitive to the precision of replication estimates; this
raises questions about how one should set replication power when replicating a null effect.
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Empirical results.—The estimated models in Table 1 in the main text can be used to gener-

ate predictions of the average relative effect sizes. To procedure for simulating replications

is identical to the procedure outlined in the main text for the replication rate case. Let

txi, σi, xr,i, σr,iu
Msig

i“1 be the set of simulated original studies that are published and significant,

and their corresponding replication results; Msig is the size of the set. The predicted relative

effect size is equal to

1

Msig

Msig
ÿ

i“1

ρsigi,r

ρsigi
(69)

where ρ “ tanh z denotes the Pearson correlation coefficient which is obtained by transforming

the Fisher-transformed correlation coefficient (Fisher, 1915). I also present results for the

median relative effect size. Results are presented in Table G2. The predicted average relative

effect size is relatively close to observed average relative effect size in economics, somewhat

further off in social science, and quite far off in psychology. In each case, the predicted average

relative effect size is optimistic compared to the observed value. In economics and psychology,

the difference in predicted and observed relative effect sizes is not statistically different from

zero, while in psychology it is. Predictions for median relative effect sizes show qualitatively

similar results.

Economics Psychology Social Sciences

Observed relative effect size (mean) 0.657 0.374 0.443
Predicted relative effect size (mean) 0.703 0.637 0.533

(0.135) (0.060) (0.141)

Observed relative effect size (median) 0.691 0.292 0.527
Predicted relative effect size (median) 0.747 0.674 0.595

(0.129) (0.063) (0.240)

Table G2. Average Relative Effect Size Predictions

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social science experiments to Camerer et al. (2018). Observed relative effect sizes are
based on data from large-scale replication studies. Predicted average relative effect sizes are calculated using
equation (69) and the procedure outlined in the text. Standard errors are calculated using the delta method.

H. Extending the Replication Rate Definition

This appendix analyzes a generalization of the replication rate definition that extends to in-

significant results. It outlines a number of issues with this proposal.
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The Generalized Replication Rate.—Suppose we extend the definition of the replication rate

such that insignificant original results are counted as ‘successfully replicated’ if they are also

insignificant in replications. Assume replication selection is a random sample of published

results. Then we have the following definitions:

Definition H1 (Generalized replication probability of a single study). The replication prob-
ability of a study pX,Σ,Θq which is published pD “ 1q and chosen for replication (R “ 1)
is

ĄRP
´

X,Θ, σrpX,Σ, βq

¯

“

$

’

’

&

’

’

%

P

ˆ

|Xr |

σrpX,Σ,βq
ě 1.96, signpXq “ signpXrq

ˇ

ˇ

ˇ
X,Θ, σrpX,Σ, βq

˙

if 1.96.Σ ď |X|

P

ˆ

|Xr |

σrpX,Σ,βq
ă 1.96

ˇ

ˇ

ˇ
X,Θ, σrpX,Σ, βq

˙

if 1.96.Σ ą |X|

(70)

Definition H2 (Expected generalized replication probability). The expected generalized repli-

cation probability equals

E

”

ĄRP
´

X,Θ, σrpX,Σ, βq

¯ı

“ P

´

1.96.Σ ď
ˇ

ˇX
ˇ

ˇ

¯

E

«

ĄRP
´

X,Θ, σrpX,Σ, βq

ˇ

ˇ

ˇ

ˇ

ˇ

X,Θ, σrpX,Σ, βq, 1.96.Σ ď
ˇ

ˇX
ˇ

ˇ

ff

`

ˆ

1 ´P

´

1.96.Σ ď
ˇ

ˇX
ˇ

ˇ

¯

˙

E

«

ĄRP
´

X,Θ, σrpX,Σ, βq

ˇ

ˇ

ˇ

ˇ

ˇ

X,Θ, σrpX,Σ, βq, 1.96.Σ ą
ˇ

ˇX
ˇ

ˇ

ff

(71)

First, note that Definition H2 equals the standard replication rate definition when the

expectation is taken only over significant studies because, in this case, P
`

|X| ď 1.96.Σ
˘

“

0. Thus, the degree to which the expected generalized replication probability differs from

the standard expected replication probability depends on two factors. First, the share of

published results that are insignificant. Second, the expected probability that replications

will be insignificant conditional on original estimates being insignificant.27

Empirical Results.—To analyze the generalized replication rate, we can apply the empirical

approach outlined in the main text, but using the generalized definition in place of the original

definition. Recall that the original replication rate is invariant to publication bias against

null results. The generalized replication rate, by contrast, does vary as the degree of selective

publication against null results changes. Thus, two sets of results are presented for comparison.

The first set assumes selective publication using estimated selection parameters in Table 1 in the

main text. The second set assumes no selective publication (i.e. that all results are published

with equal probability). We examine two rules for calculating replication power: the common

power rule and the original power rule (where the replication standard error is set equal to the

original standard error). For more details on different rules for calculation replication power,

see Appendix E.

27Additionally, note that this definition implies that if θ “ 0, then ĄRP
´

X,Θ, σrpX,Σ, βq|Θ “ 0
¯

“ 0.90375.

That is, the replication probability of null results is constant and independent of power in original studies and
replication studies.



54

Table H1 reports the results for both applications. Under the common power rule, the sim-

ulated generalized replication rate remains below intended power in both publication regimes.

Under the original power rule, it is relatively low when there is selective publication and around

80% when there is no selective publication.

These generalized replication rate predictions differs from the standard replication rate pre-

dictions for two reasons: (i) the share of insignificant results in the published literature and

(ii) the replication probability when results are insignificant, which depends on the power rule

used in replication studies. On the first point, moving from the selective publication regime

to the no selective publication regime implies a dramatic increase in the share of insignificant

published results; in both applications, null results change from a minority of published results

to a majority. On the second point, the results show that the replication power rules considered

here have some undesirable properties. First, note that the common power rule is designed to

detect original estimates with high statistical power. This implies that low-powered, insignifi-

cant original results will be high-powered in replications, which increases the probability that

they are significant and thus counted as replication ‘failures’ under the generalized definition.

The original power rule has the reverse problem. On the one hand, low-powered, insignificant

original studies are likely to be insignificant in replications, which counts as a ‘successful’ repli-

cation under the generalized definition. However, on the other hand, low-powered, significant

original studies will have low replication probabilities when the same low-powered design is

repeated in replications. The generalized replication rate therefore depends crucially on the

share of significant and insignificant findings in the published literature, and the distribution

of standard errors. Under the original power rule with no selective publication, the generalized

replication rate is around 80% in both applications; however, with greater power in original

studies, the replication rate would fall.

While the generalized replication rate changes as selective publication is reduced, the direc-

tion of this change depends on which replication power rule is used: with the original power

rule the replication rate increases, while with the common power rule it decreases.

Overall, generalizing the replication rate with Definition H2 does not deliver replication

rates close to intended power under the common power rule. For the original power rule, it is

higher when there is no selective publication because replications repeat low-power designs for

low-powered original studies with insignificant results. The generalized replication rate under

this original power rule will therefore be sensitive to the distribution of power in original studies.
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Table H1 – Predicted Generalized Replication Rate Results

Simulated statistics

A Economics experiments 92% for X Original power

Selective publication

Generalized replication rate 0.600 0.553
PpReplicated|SX “ 1q 0.600 0.551
PpReplicated|SX “ 0q 0.574 0.789
PpSX “ 1q 0.993 0.993
PpSX “ 0q 0.007 0.007

No selective publication

Generalized replication rate 0.432 0.773
PpReplicated|SX “ 1q 0.582 0.515
PpReplicated|SX “ 0q 0.378 0.867
PpSX “ 1q 0.268 0.268
PpSX “ 0q 0.732 0.732

B Psychology experiments

Selective Publication
Generalized replication rate 0.546 0.526
PpReplicated|SX “ 1q 0.544 0.487
PpReplicated|SX “ 0q 0.563 0.839
PpSX “ 1q 0.890 0.890
PpSX “ 0q 0.110 0.110

No selective publication

Generalized replication rate 0.490 0.798
PpReplicated|SX “ 1q 0.535 0.469
PpReplicated|SX “ 0q 0.478 0.886
PpSX “ 1q 0.209 0.209
PpSX “ 0q 0.791 0.791

Notes: Economics experiments refer to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). The generalized replication rate is defined in the text. The indicator variable SX equals
one for significant results and zero otherwise. Economics experiments refers to Camerer et al. (2016) and
psychology experiments to Open Science Collaboration (2015). Simulated statistics are based on parameter
estimates in Table 1 in the main text. Different column represent different rules for calculating power in
replications.


